|
4 | 4 | "cell_type": "markdown", |
5 | 5 | "metadata": {}, |
6 | 6 | "source": [ |
7 | | - "# Part 1: Generalizing the Recurrence:" |
| 7 | + "# Generalizing a Taylor Recurrence" |
8 | 8 | ] |
9 | 9 | }, |
10 | 10 | { |
11 | 11 | "cell_type": "code", |
12 | | - "execution_count": 1, |
| 12 | + "execution_count": 28, |
13 | 13 | "metadata": {}, |
14 | 14 | "outputs": [], |
15 | 15 | "source": [ |
|
35 | 35 | }, |
36 | 36 | { |
37 | 37 | "cell_type": "code", |
38 | | - "execution_count": 2, |
| 38 | + "execution_count": 29, |
39 | 39 | "metadata": {}, |
40 | 40 | "outputs": [], |
41 | 41 | "source": [ |
|
46 | 46 | }, |
47 | 47 | { |
48 | 48 | "cell_type": "code", |
49 | | - "execution_count": 3, |
| 49 | + "execution_count": 30, |
50 | 50 | "metadata": {}, |
51 | 51 | "outputs": [], |
52 | 52 | "source": [ |
|
59 | 59 | }, |
60 | 60 | { |
61 | 61 | "cell_type": "code", |
62 | | - "execution_count": 5, |
| 62 | + "execution_count": 31, |
63 | 63 | "metadata": {}, |
64 | 64 | "outputs": [], |
65 | 65 | "source": [ |
|
75 | 75 | }, |
76 | 76 | { |
77 | 77 | "cell_type": "code", |
78 | | - "execution_count": 6, |
| 78 | + "execution_count": 32, |
79 | 79 | "metadata": {}, |
80 | 80 | "outputs": [], |
81 | 81 | "source": [ |
|
93 | 93 | }, |
94 | 94 | { |
95 | 95 | "cell_type": "code", |
96 | | - "execution_count": 12, |
| 96 | + "execution_count": 33, |
| 97 | + "metadata": {}, |
| 98 | + "outputs": [ |
| 99 | + { |
| 100 | + "data": { |
| 101 | + "text/plain": [ |
| 102 | + "4" |
| 103 | + ] |
| 104 | + }, |
| 105 | + "execution_count": 33, |
| 106 | + "metadata": {}, |
| 107 | + "output_type": "execute_result" |
| 108 | + } |
| 109 | + ], |
| 110 | + "source": [ |
| 111 | + "recur, order = get_shifted_recurrence_exp_from_pde(laplace2d)\n", |
| 112 | + "order" |
| 113 | + ] |
| 114 | + }, |
| 115 | + { |
| 116 | + "cell_type": "code", |
| 117 | + "execution_count": 34, |
| 118 | + "metadata": {}, |
| 119 | + "outputs": [ |
| 120 | + { |
| 121 | + "data": { |
| 122 | + "text/latex": [ |
| 123 | + "$\\displaystyle 1.55431223447522 \\cdot 10^{-15}$" |
| 124 | + ], |
| 125 | + "text/plain": [ |
| 126 | + "1.55431223447522e-15" |
| 127 | + ] |
| 128 | + }, |
| 129 | + "execution_count": 34, |
| 130 | + "metadata": {}, |
| 131 | + "output_type": "execute_result" |
| 132 | + } |
| 133 | + ], |
| 134 | + "source": [ |
| 135 | + "#Sanity check that recurrence is correct\n", |
| 136 | + "derivs_lap = compute_derivatives(5)\n", |
| 137 | + "exp = recur.subs(n, 4)\n", |
| 138 | + "exp.subs(s(4), derivs_lap[4]).subs(s(3), derivs_lap[3]).subs(s(2), derivs_lap[2]).subs(s(1), derivs_lap[1]).subs(var[0],np.random.rand()).subs(var[1],np.random.rand())" |
| 139 | + ] |
| 140 | + }, |
| 141 | + { |
| 142 | + "cell_type": "markdown", |
| 143 | + "metadata": {}, |
| 144 | + "source": [ |
| 145 | + "## Step 2: We need to arrange the terms in the recurrence as a polynomial in $x_0$, $s(n)$\n", |
| 146 | + "$$\n", |
| 147 | + "table[i, j]\n", |
| 148 | + "$$\n", |
| 149 | + "Where $i = 0$ represents the coefficient attached to $s(n)$ and $i = 1$ represents $s(n-1)$, etc. and the $j$ is for the polynomial in $x_0$." |
| 150 | + ] |
| 151 | + }, |
| 152 | + { |
| 153 | + "cell_type": "code", |
| 154 | + "execution_count": 59, |
| 155 | + "metadata": {}, |
| 156 | + "outputs": [ |
| 157 | + { |
| 158 | + "data": { |
| 159 | + "text/latex": [ |
| 160 | + "$\\displaystyle \\operatorname{Poly}{\\left( \\left(\\left(-1\\right)^{n} x_{0}^{3} + \\left(-1\\right)^{n} x_{0} x_{1}^{2}\\right) s{\\left(n \\right)} + \\left(- 3 \\left(-1\\right)^{n} n x_{0}^{2} - \\left(-1\\right)^{n} n x_{1}^{2} + 5 \\left(-1\\right)^{n} x_{0}^{2} + 3 \\left(-1\\right)^{n} x_{1}^{2}\\right) s{\\left(n - 1 \\right)} + \\left(3 \\left(-1\\right)^{n} n^{2} x_{0} - 13 \\left(-1\\right)^{n} n x_{0} + 14 \\left(-1\\right)^{n} x_{0}\\right) s{\\left(n - 2 \\right)} + \\left(- \\left(-1\\right)^{n} n^{3} + 8 \\left(-1\\right)^{n} n^{2} - 21 \\left(-1\\right)^{n} n + 18 \\left(-1\\right)^{n}\\right) s{\\left(n - 3 \\right)}, s{\\left(n \\right)}, s{\\left(n - 1 \\right)}, s{\\left(n - 2 \\right)}, s{\\left(n - 3 \\right)}, domain=\\mathbb{Z}\\left[n, x_{0}, \\left(-1\\right)^{n}, x_{1}\\right] \\right)}$" |
| 161 | + ], |
| 162 | + "text/plain": [ |
| 163 | + "Poly(((-1)**n*x0**3 + (-1)**n*x0*x1**2)*(s(n)) + (-3*(-1)**n*n*x0**2 - (-1)**n*n*x1**2 + 5*(-1)**n*x0**2 + 3*(-1)**n*x1**2)*(s(n - 1)) + (3*(-1)**n*n**2*x0 - 13*(-1)**n*n*x0 + 14*(-1)**n*x0)*(s(n - 2)) + (-(-1)**n*n**3 + 8*(-1)**n*n**2 - 21*(-1)**n*n + 18*(-1)**n)*(s(n - 3)), s(n), s(n - 1), s(n - 2), s(n - 3), domain='ZZ[n,x0,(-1)**n,x1]')" |
| 164 | + ] |
| 165 | + }, |
| 166 | + "execution_count": 59, |
| 167 | + "metadata": {}, |
| 168 | + "output_type": "execute_result" |
| 169 | + } |
| 170 | + ], |
| 171 | + "source": [ |
| 172 | + "recur\n", |
| 173 | + "poly_in_s_n = sp.poly(recur, [s(n-i) for i in range(order)])\n", |
| 174 | + "poly_in_s_n" |
| 175 | + ] |
| 176 | + }, |
| 177 | + { |
| 178 | + "cell_type": "code", |
| 179 | + "execution_count": null, |
97 | 180 | "metadata": {}, |
98 | 181 | "outputs": [], |
99 | 182 | "source": [ |
100 | | - "recur = get_shifted_recurrence_exp_from_pde(laplace2d)" |
| 183 | + "coeff_s_n = [poly_in_s_n.coeff_monomial(poly_in_s_n.gens[i]) for i in range(order)]\n", |
| 184 | + "\n", |
| 185 | + "table = []\n", |
| 186 | + "for i in range(len(coeff_s_n)):\n", |
| 187 | + " table.append(sp.poly(coeff_s_n[i], var[0]).all_coeffs()[::-1])" |
| 188 | + ] |
| 189 | + }, |
| 190 | + { |
| 191 | + "cell_type": "code", |
| 192 | + "execution_count": 58, |
| 193 | + "metadata": {}, |
| 194 | + "outputs": [ |
| 195 | + { |
| 196 | + "data": { |
| 197 | + "text/plain": [ |
| 198 | + "[[0, (-1)**n*x1**2, 0, (-1)**n],\n", |
| 199 | + " [-(-1)**n*n*x1**2 + 3*(-1)**n*x1**2, 0, -3*(-1)**n*n + 5*(-1)**n],\n", |
| 200 | + " [0, 3*(-1)**n*n**2 - 13*(-1)**n*n + 14*(-1)**n],\n", |
| 201 | + " [-(-1)**n*n**3 + 8*(-1)**n*n**2 - 21*(-1)**n*n + 18*(-1)**n]]" |
| 202 | + ] |
| 203 | + }, |
| 204 | + "execution_count": 58, |
| 205 | + "metadata": {}, |
| 206 | + "output_type": "execute_result" |
| 207 | + } |
| 208 | + ], |
| 209 | + "source": [ |
| 210 | + "table" |
101 | 211 | ] |
102 | 212 | }, |
103 | 213 | { |
|
0 commit comments