@@ -153,7 +153,7 @@ def generate_lamb_expr(i, n_initial):
153153
154154 ### NEW CODE - COMPUTE OFF AXIS INTERACTIONS
155155 start_order , t_recur_order , t_recur = get_reindexed_and_center_origin_off_axis_recurrence (pde )
156- t_exp , t_exp_order = get_off_axis_expression (pde , 8 )
156+ t_exp , t_exp_order , _ = get_off_axis_expression (pde , 8 )
157157 storage_taylor_order = max (t_recur_order , t_exp_order + 1 )
158158
159159 storage_taylor = [np .zeros ((n_p , n_p ))] * storage_taylor_order
@@ -176,15 +176,15 @@ def gen_lamb_expr_t_recur(i, start_order):
176176 return sp .lambdify (arg_list , lamb_expr_symb )
177177
178178
179- def gen_lamb_expr_t_exp (i , t_exp_order ):
179+ def gen_lamb_expr_t_exp (i , t_exp_order , start_order ):
180180 arg_list = []
181181 for j in range (t_exp_order , - 1 , - 1 ):
182182 # pylint: disable-next=not-callable
183183 arg_list .append (s (i - j ))
184184 for j in range (ndim ):
185185 arg_list .append (var [j ])
186186
187- if i < t_exp_order :
187+ if i < start_order :
188188 lamb_expr_symb_deriv = sp .diff (g_x_y , var_t [0 ], i )
189189 for j in range (ndim ):
190190 lamb_expr_symb_deriv = lamb_expr_symb_deriv .subs (var_t [j ], 0 )
@@ -203,7 +203,7 @@ def gen_lamb_expr_t_exp(i, t_exp_order):
203203 storage_taylor .pop (0 )
204204 storage_taylor .append (lamb_expr_t_recur (* a1 ) + np .zeros ((n_p , n_p )))
205205
206- lamb_expr_t_exp = gen_lamb_expr_t_exp (i , t_exp_order )
206+ lamb_expr_t_exp = gen_lamb_expr_t_exp (i , t_exp_order , start_order )
207207 a2 = [* storage_taylor [- (t_exp_order + 1 ):], * coord ]
208208
209209 interactions_off_axis += lamb_expr_t_exp (* a2 ) * radius ** i / math .factorial (i )
@@ -231,7 +231,6 @@ def generate_true(i):
231231 a4 = [* coord ]
232232 s_new_true = lamb_expr_true (* a4 )
233233 interactions_true += s_new_true * radius ** i / math .factorial (i )
234-
235234 ###############
236235
237236 #slope of line y = mx
@@ -251,14 +250,13 @@ def generate_true(i):
251250 print ("Y:" , coord [1 ][mask_on_axis ].reshape (- 1 )[np .argmax (relerr_on )])
252251
253252 print ("-------------------------" )
254-
253+
255254 if np .any (mask_off_axis ):
256255 relerr_off = np .abs (interactions_off_axis [mask_off_axis ]- interactions_true [mask_off_axis ])/ np .abs (interactions_off_axis [mask_off_axis ])
257256 print ("MAX OFF AXIS ERROR(" , percent_off , "):" , np .max (relerr_off ))
258257 print (np .mean (relerr_off ))
259258 print ("X:" , coord [0 ][mask_off_axis ].reshape (- 1 )[np .argmax (relerr_off )])
260- print ("Y:" , coord [1 ][mask_off_axis ].reshape (- 1 )[np .argmax (relerr_off )])
261-
259+ print ("Y:" , coord [1 ][mask_off_axis ].reshape (- 1 )[np .argmax (relerr_off )])
262260
263261 interactions_total = np .zeros (coord [0 ].shape )
264262 interactions_total [mask_on_axis ] = interactions_on_axis [mask_on_axis ]
0 commit comments