|
14 | 14 | from desdeo_problem.problem import ScalarObjective |
15 | 15 | from desdeo_problem.problem.Problem import MOProblem, ProblemBase |
16 | 16 |
|
| 17 | +def re21(var_iv: np.array = np.array([2, 2, 2, 2])) -> MOProblem: |
| 18 | + """ Four bar truss design problem. |
| 19 | + Two objectives and four variables. |
| 20 | + |
| 21 | + Arguments: |
| 22 | + var_iv (np.array): Optional, initial variable values. |
| 23 | + Defaults are [2, 2, 2, 2]. x1, x4 ∈ [a, 3a], x2, x3 ∈ [√2 a, 3a] |
| 24 | + and a = F / sigma |
| 25 | + Returns: |
| 26 | + MOProblem: a problem object. |
| 27 | + """ |
| 28 | + |
| 29 | + # Parameters |
| 30 | + F = 10.0 |
| 31 | + sigma = 10.0 |
| 32 | + E = 2.0 * 1e5 |
| 33 | + L = 200.0 |
| 34 | + a = F / sigma |
| 35 | + |
| 36 | + # Check the number of variables |
| 37 | + if (np.shape(np.atleast_2d(var_iv)[0]) != (4,)): |
| 38 | + raise RuntimeError("Number of variables must be four") |
| 39 | + |
| 40 | + # Lower bounds |
| 41 | + lb = np.array([a, np.sqrt(2) * a, np.sqrt(2) * a, a]) |
| 42 | + |
| 43 | + # Upper bounds |
| 44 | + ub = np.array([3 * a, 3 * a, 3 * a, 3 * a]) |
| 45 | + |
| 46 | + # Check the variable bounds |
| 47 | + if np.any(lb > var_iv) or np.any(ub < var_iv): |
| 48 | + raise ValueError("Initial variable values need to be between lower and upper bounds") |
| 49 | + |
| 50 | + def f_1(x: np.ndarray) -> np.ndarray: |
| 51 | + x = np.atleast_2d(x) |
| 52 | + return L * ((2 * x[:, 0]) + np.sqrt(2.0) * x[:, 1] + np.sqrt(x[:, 2]) + x[:, 3]) |
| 53 | + |
| 54 | + def f_2(x: np.ndarray) -> np.ndarray: |
| 55 | + x = np.atleast_2d(x) |
| 56 | + return ((F * L) / E) * ((2.0 / x[:, 0]) + |
| 57 | + (2.0 * np.sqrt(2.0) / x[:, 1]) - (2.0 * np.sqrt(2.0) / x[:, 2]) + (2.0 / x[:, 3])) |
| 58 | + |
| 59 | + objective_1 = ScalarObjective(name="minimize the structural volume", evaluator=f_1, maximize=[False]) |
| 60 | + objective_2 = ScalarObjective(name="minimize the joint displacement", evaluator=f_2, maximize=[False]) |
| 61 | + |
| 62 | + objectives = [objective_1, objective_2] |
| 63 | + |
| 64 | + # The four variables determine the length of four bars |
| 65 | + x_1 = Variable("x_1", 2 * a, a, 3 * a) |
| 66 | + x_2 = Variable("x_2", 2 * a, (np.sqrt(2.0) * a), 3 * a) |
| 67 | + x_3 = Variable("x_3", 2 * a, (np.sqrt(2.0) * a), 3 * a) |
| 68 | + x_4 = Variable("x_4", 2 * a, a, 3 * a) |
| 69 | + |
| 70 | + variables = [x_1, x_2, x_3, x_4] |
| 71 | + |
| 72 | + problem = MOProblem(variables=variables, objectives=objectives) |
| 73 | + |
| 74 | + return problem |
| 75 | + |
| 76 | + |
17 | 77 |
|
18 | 78 | def re22(var_iv: np.array = np.array([7.2, 10, 20])) -> MOProblem: |
19 | 79 | """ Reinforced concrete beam design problem. |
|
0 commit comments