Skip to content

loading a model failes with validation error undefined symbol: llama_model_dev_layer #9

@sidietz

Description

@sidietz

Prerequisites

Please answer the following questions for yourself before submitting an issue.

  • I am running the latest code. Development is very rapid so there are no tagged versions as of now.
  • I carefully followed the README.md.
  • I searched using keywords relevant to my issue to make sure that I am creating a new issue that is not already open (or closed).
  • I reviewed the Discussions, and have a new bug or useful enhancement to share.

Expected Behavior

When trying to load a model (here: gpt-oss:20b), it should load.

Current Behavior

A validation error occurs.

ValidationError: 1 validation error for LlamaCppEmbeddings
  Value error, Could not load Llama model from path: [/home/simon/.cache/llama.cpp/unsloth_gpt-oss-20b-GGUF_gpt-oss-20b-Q4_K_M.gguf.](http://localhost:8888/home/simon/.cache/llama.cpp/unsloth_gpt-oss-20b-GGUF_gpt-oss-20b-Q4_K_M.gguf.) Received error [/home/simon/code/current/rag/wheel/llama-cpp-python/llama_cpp/lib/libllama.so](http://localhost:8888/lab/tree/wheel/llama-cpp-python/llama_cpp/lib/libllama.so): undefined symbol: llama_model_dev_layer [type=value_error, input_value={'model_path': '[/home/....gguf](http://localhost:8888/...)'}, input_type=dict]
    For further information visit https://errors.pydantic.dev/2.11/v/value_error

Environment and Context

python -V
Python 3.11.13
lscpu

Architecture:                x86_64
  CPU op-mode(s):            32-bit, 64-bit
  Address sizes:             48 bits physical, 48 bits virtual
  Byte Order:                Little Endian
CPU(s):                      16
  On-line CPU(s) list:       0-15
Vendor ID:                   AuthenticAMD
  Model name:                AMD Ryzen AI 7 PRO 360 w/ Radeon 880M
    CPU family:              26
    Model:                   36
    Thread(s) per core:      2
    Core(s) per socket:      8
    Socket(s):               1
    Stepping:                0
    Frequency boost:         enabled
    CPU(s) scaling MHz:      50%
    CPU max MHz:             5090.9102
    CPU min MHz:             623.3770
    BogoMIPS:                3992.66
    Flags:                   fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pa
                             t pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt
                             pdpe1gb rdtscp lm constant_tsc rep_good amd_lbr_v2 nopl xtopolog
                             y nonstop_tsc cpuid extd_apicid aperfmperf rapl pni pclmulqdq mo
                             nitor ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f1
                             6c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a mi
                             salignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_
                             core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 hw_ps
                             tate ssbd mba perfmon_v2 ibrs ibpb stibp ibrs_enhanced vmmcall f
                             sgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a av
                             x512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512
                             cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_l
                             lc cqm_occup_llc cqm_mbm_total cqm_mbm_local user_shstk avx_vnni
                              avx512_bf16 clzero irperf xsaveerptr rdpru wbnoinvd cppc arat n
                             pt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid deco
                             deassists pausefilter pfthreshold avic v_vmsave_vmload vgif x2av
                             ic v_spec_ctrl vnmi avx512vbmi umip pku ospke avx512_vbmi2 gfni
                             vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq rdpid
                              bus_lock_detect movdiri movdir64b overflow_recov succor smca fs
                             rm avx512_vp2intersect flush_l1d amd_lbr_pmc_freeze
Virtualization features:
  Virtualization:            AMD-V
Caches (sum of all):
  L1d:                       384 KiB (8 instances)
  L1i:                       256 KiB (8 instances)
  L2:                        8 MiB (8 instances)
  L3:                        16 MiB (2 instances)
NUMA:
  NUMA node(s):              1
  NUMA node0 CPU(s):         0-15
Vulnerabilities:
  Gather data sampling:      Not affected
  Ghostwrite:                Not affected
  Indirect target selection: Not affected
  Itlb multihit:             Not affected
  L1tf:                      Not affected
  Mds:                       Not affected
  Meltdown:                  Not affected
  Mmio stale data:           Not affected
  Old microcode:             Not affected
  Reg file data sampling:    Not affected
  Retbleed:                  Not affected
  Spec rstack overflow:      Mitigation; IBPB on VMEXIT only
  Spec store bypass:         Mitigation; Speculative Store Bypass disabled via prctl
  Spectre v1:                Mitigation; usercopy/swapgs barriers and __user pointer sanitiza
                             tion
  Spectre v2:                Mitigation; Enhanced / Automatic IBRS; IBPB conditional; STIBP a
                             lways-on; PBRSB-eIBRS Not affected; BHI Not affected
  Srbds:                     Not affected
  Tsa:                       Not affected
  Tsx async abort:           Not affected
  Vmscape:                   Mitigation; IBPB on VMEXIT

uname -a
Linux chimchar 6.16.8-arch2-1 #1 SMP PREEMPT_DYNAMIC Sun, 21 Sep 2025 23:19:08 +0000 x86_64 GNU/Linux

Linux distro: arch linux
Llama.cpp version: b6558

git log | head -n 3

commit 7a9bb55037aa234af1edde915791feb77b43fad6
Author: okaris <[email protected]>
Date:   Tue Sep 23 12:26:35 2025 +0000

Failure Information (for bugs)

I am using a conda environment and the vulkan backend.

Steps to Reproduce

  1. Install Llama.cpp version b6558
  2. download the most recent llama-cpp-python source code
  3. clone Llama.cpp into the vendor folder
  4. run make build.vulkan
  5. try to load a model (gpt-oss:20b in my case) in python

Failure Logs

llama = LlamaCppEmbeddings(model_path="/path/unsloth_gpt-oss-20b-GGUF_gpt-oss-20b-Q4_K_M.gguf")

ValidationError: 1 validation error for LlamaCppEmbeddings
  Value error, Could not load Llama model from path: [/home/simon/.cache/llama.cpp/unsloth_gpt-oss-20b-GGUF_gpt-oss-20b-Q4_K_M.gguf.](http://localhost:8888/home/simon/.cache/llama.cpp/unsloth_gpt-oss-20b-GGUF_gpt-oss-20b-Q4_K_M.gguf.) Received error [/home/simon/code/current/rag/wheel/llama-cpp-python/llama_cpp/lib/libllama.so](http://localhost:8888/lab/tree/wheel/llama-cpp-python/llama_cpp/lib/libllama.so): undefined symbol: llama_model_dev_layer [type=value_error, input_value={'model_path': '[/home/....gguf](http://localhost:8888/...)'}, input_type=dict]
    For further information visit https://errors.pydantic.dev/2.11/v/value_error

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions