diff --git a/NEWS.md b/NEWS.md
index 305bd31e0..efbb24039 100644
--- a/NEWS.md
+++ b/NEWS.md
@@ -3,6 +3,7 @@
* Removed `Show Warnings` modals from modules.
* Soft deprecated `datasets_selected` argument of modules in favor of `datanames`.
* Soft deprecated `show_metadata` argument of `tm_front_page()` in favor of `datanames`.
+* Modules' Show R Code widgets include library calls and their code is styled with `styler` package (#847, #786).
### Enhancements
diff --git a/R/tm_a_pca.R b/R/tm_a_pca.R
index ed13916f5..bafa7695c 100644
--- a/R/tm_a_pca.R
+++ b/R/tm_a_pca.R
@@ -434,10 +434,10 @@ srv_a_pca <- function(id, data, reporter, filter_panel_api, dat, plot_height, pl
selector_list = selector_list,
datasets = data
)
-
+ qenv <- teal.code::eval_code(data(), 'library("ggplot2");library("dplyr");library("tidyr")') # nolint quotes
anl_merged_q <- reactive({
req(anl_merged_input())
- data() %>%
+ qenv %>%
teal.code::eval_code(as.expression(anl_merged_input()$expr))
})
@@ -581,12 +581,12 @@ srv_a_pca <- function(id, data, reporter, filter_panel_api, dat, plot_height, pl
theme = list(
legend.position = "right",
legend.spacing.y = quote(grid::unit(-5, "pt")),
- legend.title = quote(element_text(vjust = 25)),
+ legend.title = quote(ggplot2::element_text(vjust = 25)),
axis.text.x = substitute(
- element_text(angle = angle_value, hjust = hjust_value),
+ ggplot2::element_text(angle = angle_value, hjust = hjust_value),
list(angle_value = angle_value, hjust_value = hjust_value)
),
- text = substitute(element_text(size = font_size), list(font_size = font_size))
+ text = substitute(ggplot2::element_text(size = font_size), list(font_size = font_size))
)
)
@@ -611,24 +611,24 @@ srv_a_pca <- function(id, data, reporter, filter_panel_api, dat, plot_height, pl
)
cols <- c(getOption("ggplot2.discrete.colour"), c("lightblue", "darkred", "black"))[1:3]
- elbow_plot <- ggplot(mapping = aes_string(x = "component", y = "value")) +
- geom_bar(
- aes(fill = "Single variance"),
+ elbow_plot <- ggplot2::ggplot(mapping = aes_string(x = "component", y = "value")) +
+ ggplot2::geom_bar(
+ ggplot2::aes(fill = "Single variance"),
data = dplyr::filter(elb_dat, metric == "Proportion of Variance"),
color = "black",
stat = "identity"
) +
- geom_point(
- aes(color = "Cumulative variance"),
+ ggplot2::geom_point(
+ ggplot2::aes(color = "Cumulative variance"),
data = dplyr::filter(elb_dat, metric == "Cumulative Proportion")
) +
- geom_line(
- aes(group = 1, color = "Cumulative variance"),
+ ggplot2::geom_line(
+ ggplot2::aes(group = 1, color = "Cumulative variance"),
data = dplyr::filter(elb_dat, metric == "Cumulative Proportion")
) +
labs +
- scale_color_manual(values = c("Cumulative variance" = cols[2], "Single variance" = cols[3])) +
- scale_fill_manual(values = c("Cumulative variance" = cols[2], "Single variance" = cols[1])) +
+ ggplot2::scale_color_manual(values = c("Cumulative variance" = cols[2], "Single variance" = cols[3])) +
+ ggplot2::scale_fill_manual(values = c("Cumulative variance" = cols[2], "Single variance" = cols[1])) +
ggthemes +
themes
},
@@ -656,9 +656,9 @@ srv_a_pca <- function(id, data, reporter, filter_panel_api, dat, plot_height, pl
dev_ggplot2_args <- teal.widgets::ggplot2_args(
theme = list(
- text = substitute(element_text(size = font_size), list(font_size = font_size)),
+ text = substitute(ggplot2::element_text(size = font_size), list(font_size = font_size)),
axis.text.x = substitute(
- element_text(angle = angle_val, hjust = hjust_val),
+ ggplot2::element_text(angle = angle_val, hjust = hjust_val),
list(angle_val = angle, hjust_val = hjust)
)
)
@@ -688,15 +688,15 @@ srv_a_pca <- function(id, data, reporter, filter_panel_api, dat, plot_height, pl
y = sin(seq(0, 2 * pi, length.out = 100))
)
- circle_plot <- ggplot(pca_rot) +
- geom_point(aes_string(x = x_axis, y = y_axis)) +
- geom_label(
- aes_string(x = x_axis, y = y_axis, label = "label"),
+ circle_plot <- ggplot2::ggplot(pca_rot) +
+ ggplot2::geom_point(ggplot2::aes_string(x = x_axis, y = y_axis)) +
+ ggplot2::geom_label(
+ ggplot2::aes_string(x = x_axis, y = y_axis, label = "label"),
nudge_x = 0.1, nudge_y = 0.05,
fontface = "bold"
) +
- geom_path(aes(x, y, group = 1), data = circle_data) +
- geom_point(aes(x = x, y = y), data = data.frame(x = 0, y = 0), shape = "x", size = 5) +
+ ggplot2::geom_path(ggplot2::aes(x, y, group = 1), data = circle_data) +
+ ggplot2::geom_point(ggplot2::aes(x = x, y = y), data = data.frame(x = 0, y = 0), shape = "x", size = 5) +
labs +
ggthemes +
themes
@@ -790,7 +790,9 @@ srv_a_pca <- function(id, data, reporter, filter_panel_api, dat, plot_height, pl
pca_plot_biplot_expr <- c(
pca_plot_biplot_expr,
substitute(
- geom_point(aes_string(x = x_axis, y = y_axis), data = pca_rot, alpha = alpha, size = size),
+ ggplot2::geom_point(ggplot2::aes_string(x = x_axis, y = y_axis),
+ data = pca_rot, alpha = alpha, size = size
+ ),
list(x_axis = input$x_axis, y_axis = input$y_axis, alpha = input$alpha, size = input$size)
)
)
@@ -801,7 +803,7 @@ srv_a_pca <- function(id, data, reporter, filter_panel_api, dat, plot_height, pl
response <- ANL[[resp_col]]
aes_biplot <- substitute(
- aes_string(x = x_axis, y = y_axis, color = "response"),
+ ggplot2::aes_string(x = x_axis, y = y_axis, color = "response"),
env = list(x_axis = x_axis, y_axis = y_axis)
)
@@ -822,7 +824,7 @@ srv_a_pca <- function(id, data, reporter, filter_panel_api, dat, plot_height, pl
qenv,
quote(pca_rot$response <- as.factor(response))
)
- quote(scale_color_brewer(palette = "Dark2"))
+ quote(ggplot2::scale_color_brewer(palette = "Dark2"))
} else if (inherits(response, "Date")) {
qenv <- teal.code::eval_code(
qenv,
@@ -830,7 +832,7 @@ srv_a_pca <- function(id, data, reporter, filter_panel_api, dat, plot_height, pl
)
quote(
- scale_color_gradient(
+ ggplot2::scale_color_gradient(
low = c(getOption("ggplot2.discrete.colour")[2], "darkred")[1],
high = c(getOption("ggplot2.discrete.colour"), "lightblue")[1],
labels = function(x) as.Date(x, origin = "1970-01-01")
@@ -841,7 +843,7 @@ srv_a_pca <- function(id, data, reporter, filter_panel_api, dat, plot_height, pl
qenv,
quote(pca_rot$response <- response)
)
- quote(scale_color_gradient(
+ quote(ggplot2::scale_color_gradient(
low = c(getOption("ggplot2.discrete.colour")[2], "darkred")[1],
high = c(getOption("ggplot2.discrete.colour"), "lightblue")[1]
))
@@ -850,7 +852,7 @@ srv_a_pca <- function(id, data, reporter, filter_panel_api, dat, plot_height, pl
pca_plot_biplot_expr <- c(
pca_plot_biplot_expr,
substitute(
- geom_point(aes_biplot, data = pca_rot, alpha = alpha, size = size),
+ ggplot2::geom_point(aes_biplot, data = pca_rot, alpha = alpha, size = size),
env = list(aes_biplot = aes_biplot, alpha = alpha, size = size)
),
scales_biplot
@@ -861,8 +863,8 @@ srv_a_pca <- function(id, data, reporter, filter_panel_api, dat, plot_height, pl
pca_plot_biplot_expr <- c(
pca_plot_biplot_expr,
substitute(
- geom_segment(
- aes_string(x = "xstart", y = "ystart", xend = x_axis, yend = y_axis),
+ ggplot2::geom_segment(
+ ggplot2::aes_string(x = "xstart", y = "ystart", xend = x_axis, yend = y_axis),
data = rot_vars,
lineend = "round", linejoin = "round",
arrow = grid::arrow(length = grid::unit(0.5, "cm"))
@@ -870,8 +872,8 @@ srv_a_pca <- function(id, data, reporter, filter_panel_api, dat, plot_height, pl
env = list(x_axis = x_axis, y_axis = y_axis)
),
substitute(
- geom_label(
- aes_string(
+ ggplot2::geom_label(
+ ggplot2::aes_string(
x = x_axis,
y = y_axis,
label = "label"
@@ -882,7 +884,7 @@ srv_a_pca <- function(id, data, reporter, filter_panel_api, dat, plot_height, pl
),
env = list(x_axis = x_axis, y_axis = y_axis)
),
- quote(geom_point(aes(x = xstart, y = ystart), data = rot_vars, shape = "x", size = 5))
+ quote(ggplot2::geom_point(ggplot2::aes(x = xstart, y = ystart), data = rot_vars, shape = "x", size = 5))
)
}
@@ -892,9 +894,9 @@ srv_a_pca <- function(id, data, reporter, filter_panel_api, dat, plot_height, pl
dev_ggplot2_args <- teal.widgets::ggplot2_args(
labs = dev_labs,
theme = list(
- text = substitute(element_text(size = font_size), list(font_size = font_size)),
+ text = substitute(ggplot2::element_text(size = font_size), list(font_size = font_size)),
axis.text.x = substitute(
- element_text(angle = angle_val, hjust = hjust_val),
+ ggplot2::element_text(angle = angle_val, hjust = hjust_val),
list(angle_val = angle, hjust_val = hjust)
)
)
@@ -942,9 +944,9 @@ srv_a_pca <- function(id, data, reporter, filter_panel_api, dat, plot_height, pl
dev_ggplot2_args <- teal.widgets::ggplot2_args(
theme = list(
- text = substitute(element_text(size = font_size), list(font_size = font_size)),
+ text = substitute(ggplot2::element_text(size = font_size), list(font_size = font_size)),
axis.text.x = substitute(
- element_text(angle = angle_val, hjust = hjust_val),
+ ggplot2::element_text(angle = angle_val, hjust = hjust_val),
list(angle_val = angle, hjust_val = hjust)
)
)
@@ -965,8 +967,8 @@ srv_a_pca <- function(id, data, reporter, filter_panel_api, dat, plot_height, pl
list(
quote(ggplot(pca_rot)),
substitute(
- geom_bar(
- aes_string(x = "Variable", y = pc),
+ ggplot2::geom_bar(
+ ggplot2::aes_string(x = "Variable", y = pc),
stat = "identity",
color = "black",
fill = c(getOption("ggplot2.discrete.colour"), "lightblue")[1]
@@ -974,8 +976,8 @@ srv_a_pca <- function(id, data, reporter, filter_panel_api, dat, plot_height, pl
env = list(pc = pc)
),
substitute(
- geom_text(
- aes(
+ ggplot2::geom_text(
+ ggplot2::aes(
x = Variable,
y = pc_name,
label = round(pc_name, 3),
diff --git a/R/tm_a_regression.R b/R/tm_a_regression.R
index bd976690a..419aead04 100644
--- a/R/tm_a_regression.R
+++ b/R/tm_a_regression.R
@@ -460,9 +460,14 @@ srv_a_regression <- function(id,
)
})
+ qenv <- teal.code::eval_code(
+ data(),
+ 'library("ggplot2");library("dplyr")' # nolint quotes
+ )
+
anl_merged_q <- reactive({
req(anl_merged_input())
- data() %>%
+ qenv %>%
teal.code::eval_code(as.expression(anl_merged_input()$expr))
})
@@ -507,7 +512,7 @@ srv_a_regression <- function(id,
selected = restoreInput(ns("label_var"), selected)
)
- data <- fortify(stats::lm(form, data = ANL))
+ data <- ggplot2::fortify(stats::lm(form, data = ANL))
cooksd <- data$.cooksd[!is.nan(data$.cooksd)]
max_outlier <- max(ceiling(max(cooksd) / mean(cooksd)), 2)
cur_outlier <- isolate(input$outlier)
@@ -597,9 +602,9 @@ srv_a_regression <- function(id,
shinyjs::show("size")
shinyjs::show("alpha")
plot <- substitute(
- expr = ggplot(fit$model[, 2:1], aes_string(regressor, response)) +
- geom_point(size = size, alpha = alpha) +
- stat_smooth(method = "lm", formula = y ~ x, se = FALSE),
+ expr = ggplot2::ggplot(fit$model[, 2:1], ggplot2::aes_string(regressor, response)) +
+ ggplot2::geom_point(size = size, alpha = alpha) +
+ ggplot2::stat_smooth(method = "lm", formula = y ~ x, se = FALSE),
env = list(
regressor = regression_var()$regressor,
response = regression_var()$response,
@@ -617,8 +622,8 @@ srv_a_regression <- function(id,
shinyjs::hide("size")
shinyjs::hide("alpha")
plot <- substitute(
- expr = ggplot(fit$model[, 2:1], aes_string(regressor, response)) +
- geom_boxplot(),
+ expr = ggplot2::ggplot(fit$model[, 2:1], ggplot2::aes_string(regressor, response)) +
+ ggplot2::geom_boxplot(),
env = list(regressor = regression_var()$regressor, response = regression_var()$response)
)
if (input$show_outlier) {
@@ -647,7 +652,7 @@ srv_a_regression <- function(id,
substitute(
expr = {
class(fit$residuals) <- NULL
- data <- fortify(fit)
+ data <- ggplot2::fortify(fit)
plot <- graph
},
env = list(
@@ -662,10 +667,10 @@ srv_a_regression <- function(id,
shinyjs::show("size")
shinyjs::show("alpha")
plot <- substitute(
- expr = ggplot(data = data, aes(.fitted, .resid)) +
- geom_point(size = size, alpha = alpha) +
- geom_hline(yintercept = 0, linetype = "dashed", size = 1) +
- geom_line(data = smoothy, mapping = smoothy_aes),
+ expr = ggplot2::ggplot(data = data, ggplot2::aes(.fitted, .resid)) +
+ ggplot2::geom_point(size = size, alpha = alpha) +
+ ggplot2::geom_hline(yintercept = 0, linetype = "dashed", size = 1) +
+ ggplot2::geom_line(data = smoothy, mapping = smoothy_aes),
env = list(size = input$size, alpha = input$alpha)
)
if (input$show_outlier) {
@@ -706,15 +711,15 @@ srv_a_regression <- function(id,
shinyjs::show("alpha")
plot_base <- output_plot_base()
plot <- substitute(
- expr = ggplot(data = data, aes(sample = .stdresid)) +
- stat_qq(size = size, alpha = alpha) +
- geom_abline(linetype = "dashed"),
+ expr = ggplot2::ggplot(data = data, ggplot2::aes(sample = .stdresid)) +
+ ggplot2::stat_qq(size = size, alpha = alpha) +
+ ggplot2::geom_abline(linetype = "dashed"),
env = list(size = input$size, alpha = input$alpha)
)
if (input$show_outlier) {
plot <- substitute(
expr = plot +
- stat_qq(
+ ggplot2::stat_qq(
geom = ggrepel::GeomTextRepel,
label = label_col %>%
data.frame(label = .) %>%
@@ -765,9 +770,9 @@ srv_a_regression <- function(id,
shinyjs::show("alpha")
plot_base <- output_plot_base()
plot <- substitute(
- expr = ggplot(data = data, aes(.fitted, sqrt(abs(.stdresid)))) +
- geom_point(size = size, alpha = alpha) +
- geom_line(data = smoothy, mapping = smoothy_aes),
+ expr = ggplot2::ggplot(data = data, ggplot2::aes(.fitted, sqrt(abs(.stdresid)))) +
+ ggplot2::geom_point(size = size, alpha = alpha) +
+ ggplot2::geom_line(data = smoothy, mapping = smoothy_aes),
env = list(size = input$size, alpha = input$alpha)
)
if (input$show_outlier) {
@@ -808,14 +813,14 @@ srv_a_regression <- function(id,
shinyjs::show("alpha")
plot_base <- output_plot_base()
plot <- substitute(
- expr = ggplot(data = data, aes(seq_along(.cooksd), .cooksd)) +
- geom_col(alpha = alpha),
+ expr = ggplot2::ggplot(data = data, ggplot2::aes(seq_along(.cooksd), .cooksd)) +
+ ggplot2::geom_col(alpha = alpha),
env = list(alpha = input$alpha)
)
if (input$show_outlier) {
plot <- substitute(
expr = plot +
- geom_hline(
+ ggplot2::geom_hline(
yintercept = c(
outlier * mean(data$.cooksd, na.rm = TRUE),
mean(data$.cooksd, na.rm = TRUE)
@@ -823,8 +828,8 @@ srv_a_regression <- function(id,
color = "red",
linetype = "dashed"
) +
- geom_text(
- aes(
+ ggplot2::geom_text(
+ ggplot2::aes(
x = 0,
y = mean(data$.cooksd, na.rm = TRUE),
label = paste("mu", "=", round(mean(data$.cooksd, na.rm = TRUE), 4)),
@@ -874,21 +879,21 @@ srv_a_regression <- function(id,
shinyjs::show("alpha")
plot_base <- output_plot_base()
plot <- substitute(
- expr = ggplot(data = data, aes(.hat, .stdresid)) +
- geom_vline(
+ expr = ggplot2::ggplot(data = data, ggplot2::aes(.hat, .stdresid)) +
+ ggplot2::geom_vline(
size = 1,
colour = "black",
linetype = "dashed",
xintercept = 0
) +
- geom_hline(
+ ggplot2::geom_hline(
size = 1,
colour = "black",
linetype = "dashed",
yintercept = 0
) +
- geom_point(size = size, alpha = alpha) +
- geom_line(data = smoothy, mapping = smoothy_aes),
+ ggplot2::geom_point(size = size, alpha = alpha) +
+ ggplot2::geom_line(data = smoothy, mapping = smoothy_aes),
env = list(size = input$size, alpha = input$alpha)
)
if (input$show_outlier) {
@@ -929,16 +934,16 @@ srv_a_regression <- function(id,
shinyjs::show("alpha")
plot_base <- output_plot_base()
plot <- substitute(
- expr = ggplot(data = data, aes(.hat, .cooksd)) +
- geom_vline(xintercept = 0, colour = NA) +
- geom_abline(
+ expr = ggplot2::ggplot(data = data, ggplot2::aes(.hat, .cooksd)) +
+ ggplot2::geom_vline(xintercept = 0, colour = NA) +
+ ggplot2::geom_abline(
slope = seq(0, 3, by = 0.5),
colour = "black",
linetype = "dashed",
size = 1
) +
- geom_line(data = smoothy, mapping = smoothy_aes) +
- geom_point(size = size, alpha = alpha),
+ ggplot2::geom_line(data = smoothy, mapping = smoothy_aes) +
+ ggplot2::geom_point(size = size, alpha = alpha),
env = list(size = input$size, alpha = input$alpha)
)
if (input$show_outlier) {
diff --git a/R/tm_data_table.R b/R/tm_data_table.R
index 5e28747f9..ea26d182a 100644
--- a/R/tm_data_table.R
+++ b/R/tm_data_table.R
@@ -318,9 +318,12 @@ srv_data_table <- function(id,
df <- data()[[dataname]]
teal::validate_has_data(df, min_nrow = 1L, msg = paste("data", dataname, "is empty"))
-
- teal.code::eval_code(
+ qenv <- teal.code::eval_code(
data(),
+ 'library("dplyr");library("DT")' # nolint quotes
+ )
+ teal.code::eval_code(
+ qenv,
substitute(
expr = {
variables <- vars
diff --git a/R/tm_g_association.R b/R/tm_g_association.R
index b14a2ba34..5c67f136e 100644
--- a/R/tm_g_association.R
+++ b/R/tm_g_association.R
@@ -342,9 +342,13 @@ srv_tm_g_association <- function(id,
selector_list = selector_list
)
+ qenv <- teal.code::eval_code(
+ data(),
+ 'library("ggplot2");library("dplyr");library("tern");library("ggmosaic")' # nolint quotes
+ )
anl_merged_q <- reactive({
req(anl_merged_input())
- data() %>% teal.code::eval_code(as.expression(anl_merged_input()$expr))
+ qenv %>% teal.code::eval_code(as.expression(anl_merged_input()$expr))
})
merged <- list(
@@ -498,9 +502,10 @@ srv_tm_g_association <- function(id,
teal.code::eval_code(
substitute(
expr = {
- plot_top <- plot_calls[[1]]
- plot_bottom <- plot_calls[[1]]
- plot <- tern::stack_grobs(grobs = lapply(list(plot_top, plot_bottom), ggplotGrob))
+ plots <- plot_calls
+ plot_top <- plots[[1]]
+ plot_bottom <- plots[[2]]
+ plot <- tern::stack_grobs(grobs = lapply(list(plot_top, plot_bottom), ggplot2::ggplotGrob))
},
env = list(
plot_calls = do.call(
diff --git a/R/tm_g_bivariate.R b/R/tm_g_bivariate.R
index 14fec9e90..5f8c9f6d4 100644
--- a/R/tm_g_bivariate.R
+++ b/R/tm_g_bivariate.R
@@ -547,10 +547,14 @@ srv_g_bivariate <- function(id,
selector_list = selector_list,
datasets = data
)
+ qenv <- teal.code::eval_code(
+ data(),
+ 'library("ggplot2");library("dplyr");library("teal.modules.general")' # nolint quotes
+ )
anl_merged_q <- reactive({
req(anl_merged_input())
- data() %>%
+ qenv %>%
teal.code::eval_code(as.expression(anl_merged_input()$expr))
})
@@ -729,6 +733,7 @@ srv_g_bivariate <- function(id,
)
# Render R code.
+
source_code_r <- reactive(teal.code::get_code(req(decorated_output_q_facets())))
teal.widgets::verbatim_popup_srv(
@@ -856,89 +861,89 @@ bivariate_ggplot_call <- function(x_class,
Reduce(function(x, y) call("+", x, y), args)
}
- plot_call <- substitute(ggplot(data_name), env = list(data_name = as.name(data_name)))
+ plot_call <- substitute(ggplot2::ggplot(data_name), env = list(data_name = as.name(data_name)))
# Single data plots
if (x_class == "numeric" && y_class == "NULL") {
- plot_call <- reduce_plot_call(plot_call, substitute(aes(x = xval), env = list(xval = x)))
+ plot_call <- reduce_plot_call(plot_call, substitute(ggplot2::aes(x = xval), env = list(xval = x)))
if (freq) {
plot_call <- reduce_plot_call(
plot_call,
- quote(geom_histogram(bins = 30)),
- quote(ylab("Frequency"))
+ quote(ggplot2::geom_histogram(bins = 30)),
+ quote(ggplot2::ylab("Frequency"))
)
} else {
plot_call <- reduce_plot_call(
plot_call,
- quote(geom_histogram(bins = 30, aes(y = after_stat(density)))),
- quote(geom_density(aes(y = after_stat(density)))),
- quote(ylab("Density"))
+ quote(ggplot2::geom_histogram(bins = 30, ggplot2::aes(y = ggplot2::after_stat(density)))),
+ quote(ggplot2::geom_density(ggplot2::aes(y = ggplot2::after_stat(density)))),
+ quote(ggplot2::ylab("Density"))
)
}
} else if (x_class == "NULL" && y_class == "numeric") {
- plot_call <- reduce_plot_call(plot_call, substitute(aes(x = yval), env = list(yval = y)))
+ plot_call <- reduce_plot_call(plot_call, substitute(ggplot2::aes(x = yval), env = list(yval = y)))
if (freq) {
plot_call <- reduce_plot_call(
plot_call,
- quote(geom_histogram(bins = 30)),
- quote(ylab("Frequency"))
+ quote(ggplot2::geom_histogram(bins = 30)),
+ quote(ggplot2::ylab("Frequency"))
)
} else {
plot_call <- reduce_plot_call(
plot_call,
- quote(geom_histogram(bins = 30, aes(y = after_stat(density)))),
- quote(geom_density(aes(y = after_stat(density)))),
- quote(ylab("Density"))
+ quote(ggplot2::geom_histogram(bins = 30, aes(y = ggplot2::after_stat(density)))),
+ quote(ggplot2::geom_density(ggplot2::aes(y = ggplot2::after_stat(density)))),
+ quote(ggplot2::ylab("Density"))
)
}
} else if (x_class == "factor" && y_class == "NULL") {
- plot_call <- reduce_plot_call(plot_call, substitute(aes(x = xval), env = list(xval = x)))
+ plot_call <- reduce_plot_call(plot_call, substitute(ggplot2::aes(x = xval), env = list(xval = x)))
if (freq) {
plot_call <- reduce_plot_call(
plot_call,
- quote(geom_bar()),
- quote(ylab("Frequency"))
+ quote(ggplot2::geom_bar()),
+ quote(ggplot2::ylab("Frequency"))
)
} else {
plot_call <- reduce_plot_call(
plot_call,
- quote(geom_bar(aes(y = after_stat(prop), group = 1))),
- quote(ylab("Fraction"))
+ quote(ggplot2::geom_bar(ggplot2::aes(y = ggplot2::after_stat(prop), group = 1))),
+ quote(ggplot2::ylab("Fraction"))
)
}
} else if (x_class == "NULL" && y_class == "factor") {
- plot_call <- reduce_plot_call(plot_call, substitute(aes(x = yval), env = list(yval = y)))
+ plot_call <- reduce_plot_call(plot_call, substitute(ggplot2::aes(x = yval), env = list(yval = y)))
if (freq) {
plot_call <- reduce_plot_call(
plot_call,
- quote(geom_bar()),
- quote(ylab("Frequency"))
+ quote(ggplot2::geom_bar()),
+ quote(ggplot2::ylab("Frequency"))
)
} else {
plot_call <- reduce_plot_call(
plot_call,
- quote(geom_bar(aes(y = after_stat(prop), group = 1))),
- quote(ylab("Fraction"))
+ quote(ggplot2::geom_bar(ggplot2::aes(y = ggplot2::after_stat(prop), group = 1))),
+ quote(ggplot2::ylab("Fraction"))
)
}
# Numeric Plots
} else if (x_class == "numeric" && y_class == "numeric") {
plot_call <- reduce_plot_call(
plot_call,
- substitute(aes(x = xval, y = yval), env = list(xval = x, yval = y)),
+ substitute(ggplot2::aes(x = xval, y = yval), env = list(xval = x, yval = y)),
# pch = 21 for consistent coloring behaviour b/w all geoms (outline and fill properties)
`if`(
!is.null(size),
substitute(
- geom_point(alpha = alphaval, size = sizeval, pch = 21),
+ ggplot2::geom_point(alpha = alphaval, size = sizeval, pch = 21),
env = list(alphaval = alpha, sizeval = size)
),
substitute(
- geom_point(alpha = alphaval, pch = 21),
+ ggplot2::geom_point(alpha = alphaval, pch = 21),
env = list(alphaval = alpha)
)
)
@@ -946,8 +951,8 @@ bivariate_ggplot_call <- function(x_class,
} else if ((x_class == "numeric" && y_class == "factor") || (x_class == "factor" && y_class == "numeric")) {
plot_call <- reduce_plot_call(
plot_call,
- substitute(aes(x = xval, y = yval), env = list(xval = x, yval = y)),
- quote(geom_boxplot())
+ substitute(ggplot2::aes(x = xval, y = yval), env = list(xval = x, yval = y)),
+ quote(ggplot2::geom_boxplot())
)
# Factor and character plots
} else if (x_class == "factor" && y_class == "factor") {
@@ -976,7 +981,7 @@ bivariate_ggplot_call <- function(x_class,
dev_ggplot2_args <- teal.widgets::ggplot2_args(labs = labs_base)
if (rotate_xaxis_labels) {
- dev_ggplot2_args$theme <- list(axis.text.x = quote(element_text(angle = 45, hjust = 1)))
+ dev_ggplot2_args$theme <- list(axis.text.x = quote(ggplot2::element_text(angle = 45, hjust = 1)))
}
all_ggplot2_args <- teal.widgets::resolve_ggplot2_args(
@@ -1042,7 +1047,7 @@ coloring_ggplot_call <- function(colour,
!identical(size, character(0))
) {
substitute(
- expr = aes(colour = colour_name, fill = fill_name, size = size_name),
+ expr = ggplot2::aes(colour = colour_name, fill = fill_name, size = size_name),
env = list(colour_name = as.name(colour), fill_name = as.name(fill), size_name = as.name(size))
)
} else if (
@@ -1051,14 +1056,14 @@ coloring_ggplot_call <- function(colour,
is_point &&
identical(size, character(0))
) {
- substitute(expr = aes(fill = fill_name), env = list(fill_name = as.name(fill)))
+ substitute(expr = ggplot2::aes(fill = fill_name), env = list(fill_name = as.name(fill)))
} else if (
!identical(colour, character(0)) &&
!identical(fill, character(0)) &&
(!is_point || identical(size, character(0)))
) {
substitute(
- expr = aes(colour = colour_name, fill = fill_name),
+ expr = ggplot2::aes(colour = colour_name, fill = fill_name),
env = list(colour_name = as.name(colour), fill_name = as.name(fill))
)
} else if (
@@ -1066,20 +1071,20 @@ coloring_ggplot_call <- function(colour,
identical(fill, character(0)) &&
(!is_point || identical(size, character(0)))
) {
- substitute(expr = aes(colour = colour_name), env = list(colour_name = as.name(colour)))
+ substitute(expr = ggplot2::aes(colour = colour_name), env = list(colour_name = as.name(colour)))
} else if (
identical(colour, character(0)) &&
!identical(fill, character(0)) &&
(!is_point || identical(size, character(0)))
) {
- substitute(expr = aes(fill = fill_name), env = list(fill_name = as.name(fill)))
+ substitute(expr = ggplot2::aes(fill = fill_name), env = list(fill_name = as.name(fill)))
} else if (
identical(colour, character(0)) &&
identical(fill, character(0)) &&
is_point &&
!identical(size, character(0))
) {
- substitute(expr = aes(size = size_name), env = list(size_name = as.name(size)))
+ substitute(expr = ggplot2::aes(size = size_name), env = list(size_name = as.name(size)))
} else if (
!identical(colour, character(0)) &&
identical(fill, character(0)) &&
@@ -1087,7 +1092,7 @@ coloring_ggplot_call <- function(colour,
!identical(size, character(0))
) {
substitute(
- expr = aes(colour = colour_name, size = size_name),
+ expr = ggplot2::aes(colour = colour_name, size = size_name),
env = list(colour_name = as.name(colour), size_name = as.name(size))
)
} else if (
@@ -1097,7 +1102,7 @@ coloring_ggplot_call <- function(colour,
!identical(size, character(0))
) {
substitute(
- expr = aes(colour = colour_name, fill = fill_name, size = size_name),
+ expr = ggplot2::aes(colour = colour_name, fill = fill_name, size = size_name),
env = list(colour_name = as.name(fill), fill_name = as.name(fill), size_name = as.name(size))
)
} else {
diff --git a/R/tm_g_distribution.R b/R/tm_g_distribution.R
index 6c9331277..7dce15bd7 100644
--- a/R/tm_g_distribution.R
+++ b/R/tm_g_distribution.R
@@ -539,9 +539,14 @@ srv_distribution <- function(id,
datasets = data
)
+ qenv <- teal.code::eval_code(
+ data(),
+ 'library("ggplot2");library("rlistings");library("dplyr")' # nolint quotes
+ )
+
anl_merged_q <- reactive({
req(anl_merged_input())
- data() %>%
+ qenv %>%
teal.code::eval_code(as.expression(anl_merged_input()$expr))
})
@@ -658,6 +663,7 @@ srv_distribution <- function(id,
"Group by variable must be `factor`, `character`, or `integer`"
)
)
+ qenv <- teal.code::eval_code(qenv, 'library("forcats")') # nolint quotes
qenv <- teal.code::eval_code(
qenv,
substitute(
@@ -674,6 +680,8 @@ srv_distribution <- function(id,
"Stratify by variable must be `factor`, `character`, or `integer`"
)
)
+
+ qenv <- teal.code::eval_code(qenv, 'library("forcats")') # nolint quotes
qenv <- teal.code::eval_code(
qenv,
substitute(
@@ -796,9 +804,9 @@ srv_distribution <- function(id,
plot_call <- if (length(s_var) == 0 && length(g_var) == 0) {
substitute(
- expr = ggplot(ANL, aes(dist_var_name)) +
- geom_histogram(
- position = "identity", aes(y = after_stat(m_type)), bins = bins_var, alpha = 0.3
+ expr = ggplot2::ggplot(ANL, ggplot2::aes(dist_var_name)) +
+ ggplot2::geom_histogram(
+ position = "identity", ggplot2::aes(y = ggplot2::after_stat(m_type)), bins = bins_var, alpha = 0.3
),
env = list(
m_type = as.name(m_type), bins_var = bins_var, dist_var_name = as.name(dist_var)
@@ -806,9 +814,10 @@ srv_distribution <- function(id,
)
} else if (length(s_var) != 0 && length(g_var) == 0) {
substitute(
- expr = ggplot(ANL, aes(dist_var_name, col = s_var_name)) +
- geom_histogram(
- position = "identity", aes(y = after_stat(m_type), fill = s_var), bins = bins_var, alpha = 0.3
+ expr = ggplot2::ggplot(ANL, aes(dist_var_name, col = s_var_name)) +
+ ggplot2::geom_histogram(
+ position = "identity", ggplot2::aes(y = ggplot2::after_stat(m_type), fill = s_var),
+ bins = bins_var, alpha = 0.3
),
env = list(
m_type = as.name(m_type),
@@ -821,11 +830,11 @@ srv_distribution <- function(id,
} else if (length(s_var) == 0 && length(g_var) != 0) {
req(scales_type)
substitute(
- expr = ggplot(ANL[ANL[[g_var]] != "NA", ], aes(dist_var_name)) +
- geom_histogram(
- position = "identity", aes(y = after_stat(m_type)), bins = bins_var, alpha = 0.3
+ expr = ggplot2::ggplot(ANL[ANL[[g_var]] != "NA", ], ggplot2::aes(dist_var_name)) +
+ ggplot2::geom_histogram(
+ position = "identity", ggplot2::aes(y = ggplot2::after_stat(m_type)), bins = bins_var, alpha = 0.3
) +
- facet_wrap(~g_var_name, ncol = 1, scales = scales_raw),
+ ggplot2::facet_wrap(~g_var_name, ncol = 1, scales = scales_raw),
env = list(
m_type = as.name(m_type),
bins_var = bins_var,
@@ -838,12 +847,12 @@ srv_distribution <- function(id,
} else {
req(scales_type)
substitute(
- expr = ggplot(ANL[ANL[[g_var]] != "NA", ], aes(dist_var_name, col = s_var_name)) +
- geom_histogram(
+ expr = ggplot2::ggplot(ANL[ANL[[g_var]] != "NA", ], ggplot2::aes(dist_var_name, col = s_var_name)) +
+ ggplot2::geom_histogram(
position = "identity",
- aes(y = after_stat(m_type), fill = s_var), bins = bins_var, alpha = 0.3
+ ggplot2::aes(y = ggplot2::after_stat(m_type), fill = s_var), bins = bins_var, alpha = 0.3
) +
- facet_wrap(~g_var_name, ncol = 1, scales = scales_raw),
+ ggplot2::facet_wrap(~g_var_name, ncol = 1, scales = scales_raw),
env = list(
m_type = as.name(m_type),
bins_var = bins_var,
@@ -860,8 +869,8 @@ srv_distribution <- function(id,
if (add_dens_var) {
plot_call <- substitute(
expr = plot_call +
- stat_density(
- aes(y = after_stat(const * m_type2)),
+ ggplot2::stat_density(
+ ggplot2::aes(y = ggplot2::after_stat(const * m_type2)),
geom = "line",
position = "identity",
alpha = 0.5,
@@ -882,6 +891,7 @@ srv_distribution <- function(id,
}
if (length(t_dist) != 0 && main_type_var == "Density" && length(g_var) == 0 && length(s_var) == 0) {
+ qenv <- teal.code::eval_code(qenv, 'library("ggpp")') # nolint quotes
qenv <- teal.code::eval_code(
qenv,
substitute(
@@ -895,7 +905,7 @@ srv_distribution <- function(id,
plot_call <- substitute(
expr = plot_call + ggpp::geom_table_npc(
data = data,
- aes(npcx = x, npcy = y, label = label),
+ ggplot2::aes(npcx = x, npcy = y, label = label),
hjust = 0, vjust = 1, size = 4
),
env = list(plot_call = plot_call, data = datas, label = label)
@@ -916,13 +926,13 @@ srv_distribution <- function(id,
plot_call <- substitute(
expr = plot_call + stat_function(
data = data.frame(x = range(ANL[[dist_var]]), color = mapped_dist),
- aes(x, color = color),
+ ggplot2::aes(x, color = color),
fun = mapped_dist_name,
n = ndensity,
size = 2,
args = params
) +
- scale_color_manual(values = stats::setNames("blue", mapped_dist), aesthetics = "color"),
+ ggplot2::scale_color_manual(values = stats::setNames("blue", mapped_dist), aesthetics = "color"),
env = list(
plot_call = plot_call,
dist_var = dist_var,
@@ -981,18 +991,18 @@ srv_distribution <- function(id,
plot_call <- if (length(s_var) == 0 && length(g_var) == 0) {
substitute(
- expr = ggplot(ANL, aes_string(sample = dist_var)),
+ expr = ggplot2::ggplot(ANL, ggplot2::aes_string(sample = dist_var)),
env = list(dist_var = dist_var)
)
} else if (length(s_var) != 0 && length(g_var) == 0) {
substitute(
- expr = ggplot(ANL, aes_string(sample = dist_var, color = s_var)),
+ expr = ggplot2::ggplot(ANL, ggplot2::aes_string(sample = dist_var, color = s_var)),
env = list(dist_var = dist_var, s_var = s_var)
)
} else if (length(s_var) == 0 && length(g_var) != 0) {
substitute(
- expr = ggplot(ANL[ANL[[g_var]] != "NA", ], aes_string(sample = dist_var)) +
- facet_wrap(~g_var_name, ncol = 1, scales = scales_raw),
+ expr = ggplot2::ggplot(ANL[ANL[[g_var]] != "NA", ], ggplot2::aes_string(sample = dist_var)) +
+ ggplot2::facet_wrap(~g_var_name, ncol = 1, scales = scales_raw),
env = list(
dist_var = dist_var,
g_var = g_var,
@@ -1002,8 +1012,8 @@ srv_distribution <- function(id,
)
} else {
substitute(
- expr = ggplot(ANL[ANL[[g_var]] != "NA", ], aes_string(sample = dist_var, color = s_var)) +
- facet_wrap(~g_var_name, ncol = 1, scales = scales_raw),
+ expr = ggplot2::ggplot(ANL[ANL[[g_var]] != "NA", ], ggplot2::aes_string(sample = dist_var, color = s_var)) +
+ ggplot2::facet_wrap(~g_var_name, ncol = 1, scales = scales_raw),
env = list(
dist_var = dist_var,
g_var = g_var,
@@ -1021,11 +1031,12 @@ srv_distribution <- function(id,
plot_call <- substitute(
expr = plot_call +
- stat_qq(distribution = mapped_dist, dparams = params),
+ ggplot2::stat_qq(distribution = mapped_dist, dparams = params),
env = list(plot_call = plot_call, mapped_dist = as.name(unname(map_dist[t_dist])))
)
if (length(t_dist) != 0 && length(g_var) == 0 && length(s_var) == 0) {
+ qenv <- teal.code::eval_code(qenv, 'library("ggpp")') # nolint quotes
qenv <- teal.code::eval_code(
qenv,
substitute(
@@ -1040,7 +1051,7 @@ srv_distribution <- function(id,
expr = plot_call +
ggpp::geom_table_npc(
data = data,
- aes(npcx = x, npcy = y, label = label),
+ ggplot2::aes(npcx = x, npcy = y, label = label),
hjust = 0,
vjust = 1,
size = 4
@@ -1056,7 +1067,7 @@ srv_distribution <- function(id,
if (isTRUE(input$qq_line)) {
plot_call <- substitute(
expr = plot_call +
- stat_qq_line(distribution = mapped_dist, dparams = params),
+ ggplot2::stat_qq_line(distribution = mapped_dist, dparams = params),
env = list(plot_call = plot_call, mapped_dist = as.name(unname(map_dist[t_dist])))
)
}
@@ -1220,6 +1231,7 @@ srv_distribution <- function(id,
qenv <- common_q()
if (length(s_var) == 0 && length(g_var) == 0) {
+ qenv <- teal.code::eval_code(qenv, 'library("generics")') # nolint quotes
qenv <- teal.code::eval_code(
qenv,
substitute(
@@ -1233,6 +1245,7 @@ srv_distribution <- function(id,
)
)
} else {
+ qenv <- teal.code::eval_code(qenv, 'library("tidyr")') # nolint quotes
qenv <- teal.code::eval_code(
qenv,
substitute(
diff --git a/R/tm_g_response.R b/R/tm_g_response.R
index 8c110f31b..ba26b62ec 100644
--- a/R/tm_g_response.R
+++ b/R/tm_g_response.R
@@ -390,9 +390,14 @@ srv_g_response <- function(id,
datasets = data
)
+ qenv <- teal.code::eval_code(
+ data(),
+ 'library("ggplot2");library("dplyr")' # nolint quotes
+ )
+
anl_merged_q <- reactive({
req(anl_merged_input())
- data() %>%
+ qenv %>%
teal.code::eval_code(as.expression(anl_merged_input()$expr))
})
@@ -476,8 +481,8 @@ srv_g_response <- function(id,
)
plot_call <- substitute(
- expr = ggplot(ANL2, aes(x = x_cl, y = ns)) +
- geom_bar(aes(fill = resp_cl), stat = "identity", position = arg_position),
+ expr = ggplot2::ggplot(ANL2, ggplot2::aes(x = x_cl, y = ns)) +
+ ggplot2::geom_bar(ggplot2::aes(fill = resp_cl), stat = "identity", position = arg_position),
env = list(
x_cl = x_cl,
resp_cl = resp_cl,
@@ -487,7 +492,7 @@ srv_g_response <- function(id,
if (!freq) {
plot_call <- substitute(
- plot_call + expand_limits(y = c(0, 1.1)),
+ plot_call + ggplot2::expand_limits(y = c(0, 1.1)),
env = list(plot_call = plot_call)
)
}
@@ -495,16 +500,16 @@ srv_g_response <- function(id,
if (counts) {
plot_call <- substitute(
expr = plot_call +
- geom_text(
+ ggplot2::geom_text(
data = ANL2,
- aes(label = ns, x = x_cl, y = ns, group = resp_cl),
+ ggplot2::aes(label = ns, x = x_cl, y = ns, group = resp_cl),
col = "white",
vjust = "middle",
hjust = "middle",
position = position_anl2_value
) +
- geom_text(
- data = ANL3, aes(label = ns, x = x_cl, y = anl3_y),
+ ggplot2::geom_text(
+ data = ANL3, ggplot2::aes(label = ns, x = x_cl, y = anl3_y),
hjust = hjust_value,
vjust = vjust_value,
position = position_anl3_value
@@ -542,7 +547,7 @@ srv_g_response <- function(id,
)
if (rotate_xaxis_labels) {
- dev_ggplot2_args$theme[["axis.text.x"]] <- quote(element_text(angle = 45, hjust = 1))
+ dev_ggplot2_args$theme[["axis.text.x"]] <- quote(ggplot2::element_text(angle = 45, hjust = 1))
}
all_ggplot2_args <- teal.widgets::resolve_ggplot2_args(
diff --git a/R/tm_g_scatterplot.R b/R/tm_g_scatterplot.R
index 1983552de..9c447a6dd 100644
--- a/R/tm_g_scatterplot.R
+++ b/R/tm_g_scatterplot.R
@@ -586,10 +586,11 @@ srv_g_scatterplot <- function(id,
datasets = data,
merge_function = "dplyr::inner_join"
)
+ qenv <- teal.code::eval_code(data(), 'library("ggplot2");library("dplyr")') # nolint quotes
anl_merged_q <- reactive({
req(anl_merged_input())
- data() %>%
+ qenv %>%
teal.code::eval_code(as.expression(anl_merged_input()$expr)) %>%
teal.code::eval_code(quote(ANL)) # used to display table when running show-r-code code
})
@@ -798,7 +799,7 @@ srv_g_scatterplot <- function(id,
"ANL"
}
- plot_call <- substitute(expr = pre_pro_anl %>% ggplot(), env = list(pre_pro_anl = str2lang(pre_pro_anl)))
+ plot_call <- substitute(expr = pre_pro_anl %>% ggplot2::ggplot(), env = list(pre_pro_anl = str2lang(pre_pro_anl)))
plot_call <- if (length(color_by_var) == 0) {
substitute(
@@ -966,7 +967,7 @@ srv_g_scatterplot <- function(id,
)
if (rotate_xaxis_labels) {
- dev_ggplot2_args$theme[["axis.text.x"]] <- quote(element_text(angle = 45, hjust = 1))
+ dev_ggplot2_args$theme[["axis.text.x"]] <- quote(ggplot2::element_text(angle = 45, hjust = 1))
}
all_ggplot2_args <- teal.widgets::resolve_ggplot2_args(
diff --git a/R/tm_g_scatterplotmatrix.R b/R/tm_g_scatterplotmatrix.R
index 4d289eb47..2fc55042b 100644
--- a/R/tm_g_scatterplotmatrix.R
+++ b/R/tm_g_scatterplotmatrix.R
@@ -106,7 +106,7 @@
#' label = "Select variable:",
#' vars = "country_id",
#' choices = value_choices(data[["sales"]], "country_id"),
-#' selected = c("DE", "FR", "IT", "ES", "PT", "GR", "NL", "BE", "LU", "AT"),
+#' selected = c("DE", "FR", "IT", "PT", "GR", "NL", "BE", "LU", "AT"),
#' multiple = TRUE
#' ),
#' select = select_spec(
@@ -329,8 +329,8 @@ srv_g_scatterplotmatrix <- function(id,
anl_merged_q <- reactive({
req(anl_merged_input())
- data() %>%
- teal.code::eval_code(as.expression(anl_merged_input()$expr))
+ qenv <- teal.code::eval_code(data(), 'library("dplyr");library("lattice")') # nolint quotes
+ teal.code::eval_code(qenv, as.expression(anl_merged_input()$expr))
})
merged <- list(
@@ -366,6 +366,7 @@ srv_g_scatterplotmatrix <- function(id,
# check character columns. If any, then those are converted to factors
check_char <- vapply(ANL[, cols_names], is.character, logical(1))
+ qenv <- teal.code::eval_code(qenv, 'library("dplyr")') # nolint quotes
if (any(check_char)) {
qenv <- teal.code::eval_code(
qenv,
diff --git a/R/tm_missing_data.R b/R/tm_missing_data.R
index 0b789b066..aa1d73e5f 100644
--- a/R/tm_missing_data.R
+++ b/R/tm_missing_data.R
@@ -532,10 +532,13 @@ srv_missing_data <- function(id,
group_var <- input$group_by_var
anl <- data_r()
+ qenv <- teal.code::eval_code(data(), {
+ 'library("dplyr");library("ggplot2");library("tidyr");library("gridExtra")' # nolint quotes
+ })
qenv <- if (!is.null(selected_vars()) && length(selected_vars()) != ncol(anl)) {
teal.code::eval_code(
- data(),
+ qenv,
substitute(
expr = ANL <- anl_name[, selected_vars, drop = FALSE],
env = list(anl_name = as.name(dataname), selected_vars = selected_vars())
@@ -543,7 +546,7 @@ srv_missing_data <- function(id,
)
} else {
teal.code::eval_code(
- data(),
+ qenv,
substitute(expr = ANL <- anl_name, env = list(anl_name = as.name(dataname)))
)
}
@@ -787,7 +790,7 @@ srv_missing_data <- function(id,
dev_ggplot2_args <- teal.widgets::ggplot2_args(
labs = list(x = "Variable", y = "Missing observations"),
- theme = list(legend.position = "bottom", axis.text.x = quote(element_text(angle = 45, hjust = 1)))
+ theme = list(legend.position = "bottom", axis.text.x = quote(ggplot2::element_text(angle = 45, hjust = 1)))
)
all_ggplot2_args <- teal.widgets::resolve_ggplot2_args(
@@ -805,32 +808,32 @@ srv_missing_data <- function(id,
qenv,
substitute(
summary_plot_top <- summary_plot_obs %>%
- ggplot() +
- aes(
+ ggplot2::ggplot() +
+ ggplot2::aes(
x = factor(create_cols_labels(col), levels = x_levels),
y = n_pct,
fill = isna
) +
- geom_bar(position = "fill", stat = "identity") +
- scale_fill_manual(
+ ggplot2::geom_bar(position = "fill", stat = "identity") +
+ ggplot2::scale_fill_manual(
name = "",
values = c("grey90", c(getOption("ggplot2.discrete.colour")[2], "#ff2951ff")[1]),
labels = c("Present", "Missing")
) +
- scale_y_continuous(
+ ggplot2::scale_y_continuous(
labels = scales::percent_format(),
breaks = seq(0, 1, by = 0.1),
expand = c(0, 0)
) +
- geom_text(
- aes(label = ifelse(isna == TRUE, sprintf("%d [%.02f%%]", n, n_pct), ""), y = 1),
+ ggplot2::geom_text(
+ ggplot2::aes(label = ifelse(isna == TRUE, sprintf("%d [%.02f%%]", n, n_pct), ""), y = 1),
hjust = 1,
color = "black"
) +
labs +
ggthemes +
themes +
- coord_flip(),
+ ggplot2::coord_flip(),
env = list(
labs = parsed_ggplot2_args$labs,
themes = parsed_ggplot2_args$theme,
@@ -867,8 +870,8 @@ srv_missing_data <- function(id,
labs = list(x = "", y = "Missing patients"),
theme = list(
legend.position = "bottom",
- axis.text.x = quote(element_text(angle = 45, hjust = 1)),
- axis.text.y = quote(element_blank())
+ axis.text.x = quote(ggplot2::element_text(angle = 45, hjust = 1)),
+ axis.text.y = quote(ggplot2::element_blank())
)
)
@@ -887,32 +890,32 @@ srv_missing_data <- function(id,
qenv,
substitute(
summary_plot_bottom <- summary_plot_patients %>%
- ggplot() +
- aes_(
+ ggplot2::ggplot() +
+ ggplot2::aes_(
x = ~ factor(create_cols_labels(col), levels = x_levels),
y = ~n_pct,
fill = ~isna
) +
- geom_bar(alpha = 1, stat = "identity", position = "fill") +
- scale_y_continuous(
+ ggplot2::geom_bar(alpha = 1, stat = "identity", position = "fill") +
+ ggplot2::scale_y_continuous(
labels = scales::percent_format(),
breaks = seq(0, 1, by = 0.1),
expand = c(0, 0)
) +
- scale_fill_manual(
+ ggplot2::scale_fill_manual(
name = "",
values = c("grey90", c(getOption("ggplot2.discrete.colour")[2], "#ff2951ff")[1]),
labels = c("Present", "Missing")
) +
- geom_text(
- aes(label = ifelse(isna == TRUE, sprintf("%d [%.02f%%]", n, n_pct), ""), y = 1),
+ ggplot2::geom_text(
+ ggplot2::aes(label = ifelse(isna == TRUE, sprintf("%d [%.02f%%]", n, n_pct), ""), y = 1),
hjust = 1,
color = "black"
) +
labs +
ggthemes +
themes +
- coord_flip(),
+ ggplot2::coord_flip(),
env = list(
labs = parsed_ggplot2_args$labs,
themes = parsed_ggplot2_args$theme,
@@ -924,14 +927,14 @@ srv_missing_data <- function(id,
if (isTRUE(input$if_patients_plot)) {
within(qenv, {
- g1 <- ggplotGrob(summary_plot_top)
- g2 <- ggplotGrob(summary_plot_bottom)
+ g1 <- ggplot2::ggplotGrob(summary_plot_top)
+ g2 <- ggplot2::ggplotGrob(summary_plot_bottom)
summary_plot <- gridExtra::gtable_cbind(g1, g2, size = "first")
summary_plot$heights <- grid::unit.pmax(g1$heights, g2$heights)
})
} else {
within(qenv, {
- g1 <- ggplotGrob(summary_plot_top)
+ g1 <- ggplot2::ggplotGrob(summary_plot_top)
summary_plot <- g1
})
}
@@ -979,7 +982,7 @@ srv_missing_data <- function(id,
labs = list(x = "", y = ""),
theme = list(
legend.position = "bottom",
- axis.text.x = quote(element_blank())
+ axis.text.x = quote(ggplot2::element_blank())
)
)
@@ -998,9 +1001,9 @@ srv_missing_data <- function(id,
labs = list(x = "", y = ""),
theme = list(
legend.position = "bottom",
- axis.text.x = quote(element_blank()),
- axis.ticks = quote(element_blank()),
- panel.grid.major = quote(element_blank())
+ axis.text.x = quote(ggplot2::element_blank()),
+ axis.ticks = quote(ggplot2::element_blank()),
+ panel.grid.major = quote(ggplot2::element_blank())
)
)
@@ -1022,14 +1025,14 @@ srv_missing_data <- function(id,
combination_plot_top <- data_combination_plot_cutoff %>%
dplyr::select(id, n) %>%
dplyr::distinct() %>%
- ggplot(aes(x = id, y = n)) +
- geom_bar(stat = "identity", fill = c(getOption("ggplot2.discrete.colour")[2], "#ff2951ff")[1]) +
- geom_text(
- aes(label = n),
- position = position_dodge(width = 0.9),
+ ggplot2::ggplot(ggplot2::aes(x = id, y = n)) +
+ ggplot2::geom_bar(stat = "identity", fill = c(getOption("ggplot2.discrete.colour")[2], "#ff2951ff")[1]) +
+ ggplot2::geom_text(
+ ggplot2::aes(label = n),
+ position = ggplot2::position_dodge(width = 0.9),
vjust = -0.25
) +
- ylim(c(0, max(data_combination_plot_cutoff$n) * 1.5)) +
+ ggplot2::ylim(c(0, max(data_combination_plot_cutoff$n) * 1.5)) +
labs1 +
ggthemes1 +
themes1
@@ -1037,17 +1040,17 @@ srv_missing_data <- function(id,
graph_number_rows <- length(unique(data_combination_plot_cutoff$id))
graph_number_cols <- nrow(data_combination_plot_cutoff) / graph_number_rows
- combination_plot_bottom <- data_combination_plot_cutoff %>% ggplot() +
- aes(x = create_cols_labels(key), y = id - 0.5, fill = value) +
- geom_tile(alpha = 0.85, height = 0.95) +
- scale_fill_manual(
+ combination_plot_bottom <- data_combination_plot_cutoff %>% ggplot2::ggplot() +
+ ggplot2::aes(x = create_cols_labels(key), y = id - 0.5, fill = value) +
+ ggplot2::geom_tile(alpha = 0.85, height = 0.95) +
+ ggplot2::scale_fill_manual(
name = "",
values = c("grey90", c(getOption("ggplot2.discrete.colour")[2], "#ff2951ff")[1]),
labels = c("Present", "Missing")
) +
- geom_hline(yintercept = seq_len(1 + graph_number_rows) - 1) +
- geom_vline(xintercept = seq_len(1 + graph_number_cols) - 0.5, linetype = "dotted") +
- coord_flip() +
+ ggplot2::geom_hline(yintercept = seq_len(1 + graph_number_rows) - 1) +
+ ggplot2::geom_vline(xintercept = seq_len(1 + graph_number_cols) - 0.5, linetype = "dotted") +
+ ggplot2::coord_flip() +
labs2 +
ggthemes2 +
themes2
@@ -1064,8 +1067,8 @@ srv_missing_data <- function(id,
)
within(qenv, {
- g1 <- ggplotGrob(combination_plot_top)
- g2 <- ggplotGrob(combination_plot_bottom)
+ g1 <- ggplot2::ggplotGrob(combination_plot_top)
+ g2 <- ggplot2::ggplotGrob(combination_plot_bottom)
combination_plot <- gridExtra::gtable_rbind(g1, g2, size = "last")
combination_plot$heights[7] <- grid::unit(0.2, "null") # rescale to get the bar chart smaller
@@ -1109,8 +1112,12 @@ srv_missing_data <- function(id,
}
qenv <- if (!is.null(group_var)) {
- teal.code::eval_code(
+ common_code_libraries_q <- teal.code::eval_code(
common_code_q(),
+ 'library("forcats");library("glue");library("rlistings")' # nolint quotes
+ )
+ teal.code::eval_code(
+ common_code_libraries_q,
substitute(
expr = {
summary_data <- ANL %>%
@@ -1158,7 +1165,7 @@ srv_missing_data <- function(id,
dev_ggplot2_args <- teal.widgets::ggplot2_args(
labs = list(x = "", y = ""),
- theme = list(legend.position = "bottom", axis.text.x = quote(element_blank()))
+ theme = list(legend.position = "bottom", axis.text.x = quote(ggplot2::element_blank()))
)
all_ggplot2_args <- teal.widgets::resolve_ggplot2_args(
@@ -1235,20 +1242,20 @@ srv_missing_data <- function(id,
teal.code::eval_code(
substitute(
expr = {
- by_subject_plot <- ggplot(summary_plot_patients, aes(
+ by_subject_plot <- ggplot2::ggplot(summary_plot_patients, ggplot2::aes(
x = factor(id, levels = order_subjects),
y = factor(col, levels = ordered_columns[["column"]]),
fill = isna
)) +
- geom_raster() +
- annotate(
+ ggplot2::geom_raster() +
+ ggplot2::annotate(
"text",
x = length(order_subjects),
y = seq_len(nrow(ordered_columns)),
hjust = 1,
label = sprintf("%d [%.02f%%]", ordered_columns[["na_count"]], ordered_columns[["na_percent"]])
) +
- scale_fill_manual(
+ ggplot2::scale_fill_manual(
name = "",
values = c("grey90", c(getOption("ggplot2.discrete.colour")[2], "#ff2951ff")[1]),
labels = c("Present", "Missing (at least one)")
diff --git a/R/tm_outliers.R b/R/tm_outliers.R
index fcd8ac75c..f618e4b14 100644
--- a/R/tm_outliers.R
+++ b/R/tm_outliers.R
@@ -439,7 +439,13 @@ srv_outliers <- function(id, data, reporter, filter_panel_api, outlier_var,
anl_merged_q <- reactive({
req(anl_merged_input())
- data() %>%
+ teal.code::eval_code(
+ data(),
+ paste0(
+ 'library("dplyr");library("tidyr");', # nolint quotes
+ 'library("tibble");library("ggplot2");library("rlistings")'
+ )
+ ) %>% # nolint quotes
teal.code::eval_code(as.expression(anl_merged_input()$expr))
})
@@ -751,9 +757,9 @@ srv_outliers <- function(id, data, reporter, filter_panel_api, outlier_var,
plot_call <- quote(ANL %>% ggplot())
plot_call <- if (input$boxplot_alts == "Box plot") {
- substitute(expr = plot_call + geom_boxplot(outlier.shape = NA), env = list(plot_call = plot_call))
+ substitute(expr = plot_call + ggplot2::geom_boxplot(outlier.shape = NA), env = list(plot_call = plot_call))
} else if (input$boxplot_alts == "Violin plot") {
- substitute(expr = plot_call + geom_violin(), env = list(plot_call = plot_call))
+ substitute(expr = plot_call + ggplot2::geom_violin(), env = list(plot_call = plot_call))
} else {
NULL
}
@@ -761,15 +767,15 @@ srv_outliers <- function(id, data, reporter, filter_panel_api, outlier_var,
plot_call <- if (identical(categorical_var, character(0)) || is.null(categorical_var)) {
inner_call <- substitute(
expr = plot_call +
- aes(x = "Entire dataset", y = outlier_var_name) +
- scale_x_discrete(),
+ ggplot2::aes(x = "Entire dataset", y = outlier_var_name) +
+ ggplot2::scale_x_discrete(),
env = list(plot_call = plot_call, outlier_var_name = as.name(outlier_var))
)
if (nrow(ANL_OUTLIER) > 0) {
substitute(
- expr = inner_call + geom_point(
+ expr = inner_call + ggplot2::geom_point(
data = ANL_OUTLIER,
- aes(x = "Entire dataset", y = outlier_var_name, color = is_outlier_selected)
+ ggplot2::aes(x = "Entire dataset", y = outlier_var_name, color = is_outlier_selected)
),
env = list(inner_call = inner_call, outlier_var_name = as.name(outlier_var))
)
@@ -779,12 +785,12 @@ srv_outliers <- function(id, data, reporter, filter_panel_api, outlier_var,
} else {
substitute(
expr = plot_call +
- aes(y = outlier_var_name, x = reorder(categorical_var_name, order)) +
- xlab(categorical_var) +
- scale_x_discrete() +
- geom_point(
+ ggplot2::aes(y = outlier_var_name, x = reorder(categorical_var_name, order)) +
+ ggplot2::xlab(categorical_var) +
+ ggplot2::scale_x_discrete() +
+ ggplot2::geom_point(
data = ANL_OUTLIER,
- aes(x = as.factor(categorical_var_name), y = outlier_var_name, color = is_outlier_selected)
+ ggplot2::aes(x = as.factor(categorical_var_name), y = outlier_var_name, color = is_outlier_selected)
),
env = list(
plot_call = plot_call,
@@ -815,7 +821,7 @@ srv_outliers <- function(id, data, reporter, filter_panel_api, outlier_var,
common_code_q(),
substitute(
expr = box_plot <- plot_call +
- scale_color_manual(values = c("TRUE" = "red", "FALSE" = "black")) +
+ ggplot2::scale_color_manual(values = c("TRUE" = "red", "FALSE" = "black")) +
labs + ggthemes + themes,
env = list(
plot_call = plot_call,
@@ -840,10 +846,10 @@ srv_outliers <- function(id, data, reporter, filter_panel_api, outlier_var,
# plot
plot_call <- substitute(
expr = ANL %>%
- ggplot(aes(x = outlier_var_name)) +
- geom_density() +
- geom_rug(data = ANL_OUTLIER, aes(x = outlier_var_name, color = is_outlier_selected)) +
- scale_color_manual(values = c("TRUE" = "red", "FALSE" = "black")),
+ ggplot2::ggplot(ggplot2::aes(x = outlier_var_name)) +
+ ggplot2::geom_density() +
+ ggplot2::geom_rug(data = ANL_OUTLIER, ggplot2::aes(x = outlier_var_name, color = is_outlier_selected)) +
+ ggplot2::scale_color_manual(values = c("TRUE" = "red", "FALSE" = "black")),
env = list(outlier_var_name = as.name(outlier_var))
)
@@ -851,7 +857,7 @@ srv_outliers <- function(id, data, reporter, filter_panel_api, outlier_var,
substitute(expr = plot_call, env = list(plot_call = plot_call))
} else {
substitute(
- expr = plot_call + facet_grid(~ reorder(categorical_var_name, order)),
+ expr = plot_call + ggplot2::facet_grid(~ reorder(categorical_var_name, order)),
env = list(plot_call = plot_call, categorical_var_name = as.name(categorical_var))
)
}
@@ -901,8 +907,8 @@ srv_outliers <- function(id, data, reporter, filter_panel_api, outlier_var,
# plot
plot_call <- substitute(
- expr = ANL %>% ggplot(aes(x = outlier_var_name)) +
- stat_ecdf(),
+ expr = ANL %>% ggplot2::ggplot(ggplot2::aes(x = outlier_var_name)) +
+ ggplot2::stat_ecdf(),
env = list(outlier_var_name = as.name(outlier_var))
)
if (length(categorical_var) == 0) {
@@ -952,7 +958,7 @@ srv_outliers <- function(id, data, reporter, filter_panel_api, outlier_var,
)
)
plot_call <- substitute(
- expr = plot_call + facet_grid(~ reorder(categorical_var_name, order)),
+ expr = plot_call + ggplot2::facet_grid(~ reorder(categorical_var_name, order)),
env = list(plot_call = plot_call, categorical_var_name = as.name(categorical_var))
)
}
@@ -977,8 +983,11 @@ srv_outliers <- function(id, data, reporter, filter_panel_api, outlier_var,
qenv,
substitute(
expr = cumulative_plot <- plot_call +
- geom_point(data = outlier_points, aes(x = outlier_var_name, y = y, color = is_outlier_selected)) +
- scale_color_manual(values = c("TRUE" = "red", "FALSE" = "black")) +
+ ggplot2::geom_point(
+ data = outlier_points,
+ ggplot2::aes(x = outlier_var_name, y = y, color = is_outlier_selected)
+ ) +
+ ggplot2::scale_color_manual(values = c("TRUE" = "red", "FALSE" = "black")) +
labs + ggthemes + themes,
env = list(
plot_call = plot_call,
diff --git a/R/tm_t_crosstable.R b/R/tm_t_crosstable.R
index f251ec31e..ea55c7e29 100644
--- a/R/tm_t_crosstable.R
+++ b/R/tm_t_crosstable.R
@@ -311,10 +311,10 @@ srv_t_crosstable <- function(id, data, reporter, filter_panel_api, label, x, y,
selector_list = selector_list,
merge_function = merge_function
)
-
+ qenv <- teal.code::eval_code(data(), 'library("rtables");library("tern");library("dplyr")') # nolint quotes
anl_merged_q <- reactive({
req(anl_merged_input())
- data() %>%
+ qenv %>%
teal.code::eval_code(as.expression(anl_merged_input()$expr))
})
diff --git a/R/tm_variable_browser.R b/R/tm_variable_browser.R
index 720b73d76..b8ec4bae4 100644
--- a/R/tm_variable_browser.R
+++ b/R/tm_variable_browser.R
@@ -713,11 +713,11 @@ plot_var_summary <- function(var,
var <- stringr::str_wrap(var, width = wrap_character)
}
var <- if (isTRUE(remove_NA_hist)) as.vector(stats::na.omit(var)) else var
- ggplot(data.frame(var), aes(x = forcats::fct_infreq(as.factor(var)))) +
- geom_bar(
+ ggplot2::ggplot(data.frame(var), ggplot2::aes(x = forcats::fct_infreq(as.factor(var)))) +
+ ggplot2::geom_bar(
stat = "count", aes(fill = ifelse(is.na(var), "withcolor", "")), show.legend = FALSE
) +
- scale_fill_manual(values = c("gray50", "tan"))
+ ggplot2::scale_fill_manual(values = c("gray50", "tan"))
}
} else if (is.numeric(var)) {
validate(need(any(!is.na(var)), "No data left to visualize."))
@@ -729,8 +729,8 @@ plot_var_summary <- function(var,
if (numeric_as_factor) {
var <- factor(var)
- ggplot(NULL, aes(x = var)) +
- geom_histogram(stat = "count")
+ ggplot2::ggplot(NULL, ggplot2::aes(x = var)) +
+ ggplot2::geom_histogram(stat = "count")
} else {
# remove outliers
if (outlier_definition != 0) {
@@ -749,10 +749,10 @@ plot_var_summary <- function(var,
}
## histogram
binwidth <- get_bin_width(var)
- p <- ggplot(data = data.frame(var = var), aes(x = var, y = after_stat(count))) +
- geom_histogram(binwidth = binwidth) +
- scale_y_continuous(
- sec.axis = sec_axis(
+ p <- ggplot2::ggplot(data = data.frame(var = var), ggplot2::aes(x = var, y = ggplot2::after_stat(count))) +
+ ggplot2::geom_histogram(binwidth = binwidth) +
+ ggplot2::scale_y_continuous(
+ sec.axis = ggplot2::sec_axis(
trans = ~ . / nrow(data.frame(var = var)),
labels = scales::percent,
name = "proportion (in %)"
@@ -760,11 +760,11 @@ plot_var_summary <- function(var,
)
if (display_density) {
- p <- p + geom_density(aes(y = after_stat(count * binwidth)))
+ p <- p + ggplot2::geom_density(ggplot2::aes(y = ggplot2::after_stat(count * binwidth)))
}
if (outlier_definition != 0) {
- p <- p + annotate(
+ p <- p + ggplot2::annotate(
geom = "text",
label = outlier_text,
x = Inf, y = Inf,
@@ -779,8 +779,8 @@ plot_var_summary <- function(var,
} else if (inherits(var, "Date") || inherits(var, "POSIXct") || inherits(var, "POSIXlt")) {
var_num <- as.numeric(var)
binwidth <- get_bin_width(var_num, 1)
- p <- ggplot(data = data.frame(var = var), aes(x = var, y = after_stat(count))) +
- geom_histogram(binwidth = binwidth)
+ p <- ggplot2::ggplot(data = data.frame(var = var), ggplot2::aes(x = var, y = ggplot2::after_stat(count))) +
+ ggplot2::geom_histogram(binwidth = binwidth)
} else {
grid::textGrob(
paste(strwrap(
@@ -818,7 +818,7 @@ plot_var_summary <- function(var,
theme = do.call("theme", all_ggplot2_args$theme)
)
}
- plot_main <- ggplotGrob(plot_main)
+ plot_main <- ggplot2::ggplotGrob(plot_main)
}
grid::grid.draw(plot_main)
diff --git a/R/utils.R b/R/utils.R
index 50d747f6c..44da1c3eb 100644
--- a/R/utils.R
+++ b/R/utils.R
@@ -90,10 +90,10 @@ add_facet_labels <- function(p, xfacet_label = NULL, yfacet_label = NULL) {
checkmate::assert_character(xfacet_label, null.ok = TRUE, min.len = 1)
checkmate::assert_character(yfacet_label, null.ok = TRUE, min.len = 1)
if (is.null(xfacet_label) && is.null(yfacet_label)) {
- return(ggplotGrob(p))
+ return(ggplot2::ggplotGrob(p))
}
grid::grid.grabExpr({
- g <- ggplotGrob(p)
+ g <- ggplot2::ggplotGrob(p)
# we are going to replace these, so we make sure they have nothing in them
checkmate::assert_class(g$grobs[[grep("xlab-t", g$layout$name, fixed = TRUE)]], "zeroGrob")
diff --git a/man/tm_g_scatterplotmatrix.Rd b/man/tm_g_scatterplotmatrix.Rd
index 9bd448f7d..32530ca8a 100644
--- a/man/tm_g_scatterplotmatrix.Rd
+++ b/man/tm_g_scatterplotmatrix.Rd
@@ -148,7 +148,7 @@ app <- init(
label = "Select variable:",
vars = "country_id",
choices = value_choices(data[["sales"]], "country_id"),
- selected = c("DE", "FR", "IT", "ES", "PT", "GR", "NL", "BE", "LU", "AT"),
+ selected = c("DE", "FR", "IT", "PT", "GR", "NL", "BE", "LU", "AT"),
multiple = TRUE
),
select = select_spec(
@@ -223,8 +223,8 @@ if (interactive()) {
\section{Examples in Shinylive}{
\describe{
\item{example-1}{
- \href{https://shinylive.io/r/app/#code=NobwRAdghgtgpmAXGKAHVA6ASmANGAYwHsIAXOMpMAGwEsAjAJykYE8AKcqajGIgEwCu1OAGcMAcwpxm1AJQAdCLTIyoBUrQBucAAQAeALS6AZoIgbaJdnN0AVLAFUAokqUBiXVIhrqu-lCkULpwAB6wqCJKAUEGxlzUAPoxUDbRgcFGugDutKQAFirsKbi6IEq6usTmpIy0YnH+GRgmzPDsFZW6tPy6ALxVHWAAIq54ugpgAGJYk6WTAJJ2cxNgzgDKK5MACsvjkwDis-tgAHIAMltgAEJj82DnjlcAgntyuJ2VEkQ6jBDwZH6pnUpCIjA6EC6XQI7AATKV4bpEQBGBFo3SojGlTGw96fLrUKD0ODUURAmGTACyJBYBHyrCuWDgqEE9DoBEmikhXTx3MqhIgEkEUCkiRMsFo1FYQPFGjBEKhlRhmIAzKU1boNRqUdj1djeYrdITiaTyUMDjIYFBlByTgAJEkiG2MohWixwTn4g1dVBEFmEzQkM0ADg1ADYAOylMMABlKABYoxi4xjMcik8jMTGMGHSgBOb2VFhwYIDGEqgCsSYrFdVMcxFZjFfzKJViPjdYROdKocLXn4qDNKow8a7SdhGDTI9K2Y12cR2aT2ebumzWZHff4cHopDNE5xGG106R3ZPR9HZ67F4n565lTvulE3AaWRSLTacAVXR6QORiEbHx8lURA1GwiQ-gMT4wJEn74kqQyjFcMxXEsVwbFcuxXEcVwXFctxXI8LxvIBhqiLQABeegDABcG6IwzKEgQVH2E4rhAX2rAlowQKiGCpDsFBMFwvWMaILCMbiaUAF0Qx6jMQ4LhyH2OgQIIzGCSI7AUmAohWtQ1BXPA-C0IIMBXISjBSFcJB0D4nJSSm9GRHJQIKc4fYENaTH6XAvSQREmkwm5pRTM85zrO5DmlE5jHyaxfYAI7CmQeTSgMfxgjA7DSciMYpuJHlEKIpBkulECZdlKbBvlMZ9qgjBECYeRAhljBZdJknJg+XIAL5cgAVkQKiJAA1nArCiMUGS2Fkg3DWNE1fnNECjeNQzVGQdRiFcG21PUohXD09mdMtq0cJMT4iAdJyXdtJxHWA3qnQt60gZt+1XLd12lNpD1ApMu1gQ9SlKFyShoIOWQqHkX4pECJSdHwQhXUCSPCGIX6VKQMCJBIiSiJ5pDkIwkRENjgR1KEmMEkSJL-WA6yE8TpO7lae2hHMtFaCwtBEijAx0MV1NQikiRhLUIL46gcAUkBhopNA8D04DH14LRUKiCSMu7pBWsaFLMvC4aRq034AyTOseu7tzdR82IiCc3Lxt0kNTGlboNu82ycCJC7tBu1NQTAMAANvXtd0ALoR32xuPlbvlmpMxZQFcEgDlcW47sdTuGjAwiaDBrmsSRsddGCW70X5LEuCXpemLQoQJwMoXhWxdcPoaMddKL4vMProjS7LdcK7AzEXc+33q10TXUMTMqSsTBtD3XJsmvTlsiBoHs83bDtqznio2+7oegaw4H8I7K9VPkrsNAM3PUGpvs3-7GMpMH49XZMUf3IDZ-A7XUumtN7kCrtpRCJxkInFQicdCJxMInGwicXCJx8InEIicV42cr551nrQQuAw3JT3vIA0iVseJWyXkbQ0xo6bmwZuQz2dtRB71Ic7F+bsgRMO9s-W+k134hx0hPb+EcfpDCStaTQpAGQnGIMVb6qx6qNTyJyLuZCQFN0GJMCRKVpE7SKiVK4SimqkGwSvXBBcRBFxrsQsujAK6aOCrYyoTVG5VxbhFWxHdFTePvF6ToXIuS0BMLodgKhiYgm0J+JSZROiiEKBAVgzx0DsAhgAEkELQUo6TNaMF+L1JQYAeoRyAA}{Open in Shinylive}
- \if{html}{\out{}}
+ \href{https://shinylive.io/r/app/#code=NobwRAdghgtgpmAXGKAHVA6ASmANGAYwHsIAXOMpMAGwEsAjAJykYE8AKcqajGIgEwCu1OAGcMAcwpxm1AJQAdCLTIyoBUrQBucAAQAeALS6AZoIgbaJdnN0AVLAFUAokqUBiXVIhrqu-lCkULpwAB6wqCJKAUEGxlzUAPoxUDbRgcFGugDutKQAFirsKbi6IEq6usTmpIy0YnH+GRgmzPDsFZW6tPy6ALxVHWAAIq54ugpgAGJYk6WTAJJ2cxNgzgDKK5MACsvjkwDis-tgAHIAMltgAEJj82DnjlcAgntyuJ2VEkQ6jBDwZH6pnUpCIjA6EC6XQI7AATKV4bpEQBGBFo3SojGlTGw96fLrUKD0ODUURAmGTACyJBYBHyrCuWDgqEE9DoBEmikhXTx3MqhIgEkEUCkiRMsFo1FYQPFGjBEKhlRhmIAzKU1boNRqUdj1djeYrdITiaTyUMDjIYFBlByTgAJEkiG2MohWixwTn4g1dVBEFmEzQkM0ADg1ADYAOylMMABlKABYoxi4xjMcik8jMTGMGHSgBOb2VFhwYIDGEqgCsSYrFdVMcxFZjFfzKJViPjdYROdKocLXn4qDNKow8a7SdhGDTI9K2Y12cR2aT2ebumzWZHff4cHopDNE5xGG106R3ZPR9HZ67F4n565lTvulE3AaWRSLTacAVXR6QORiEbHx8lURA1GwiQ-gMT4wJEn74kqQyjFcMxXEsVwbFcuxXEcVwXFctxXI8LxvIBhqiLQABeegDABcG6IwzKEgQVH2E4rhAX2rAlowQKiGCpDsFBMFwvWMaILCMbiaUAF0Qx6jMQ4LhyH2OgQIIzGCSI7AUmAohWtQ1BXPA-C0IIMBXISjBSFcJB0D4nJSSm9GRHJQIKc4fYENaTH6XAvSQREmkwm5pRTM85zrO5DmlE5jHyaxfYAI7CmQeTSgMfxgjA7DSciMYpuJHlEKIpBkulECZdlKbBvlMZ9qgjBECYeRAhljBZdJknJg+XIAL5cgAVkQKiJAA1nArCiMUGS2Fkg3DWNE1fnNECjeNQzVGQdRiFcG21PUohXD09mdMtq0cJMT4iAdJyXdtJxHWA3qnQt60gZt+1XLd12lNpD1ApMu1gQ9SlKFyShoIOWQqHkX4pECJSdHwQhXUCSPCGIX6VKQMCJBIiSiJ5pDkIwkRENjgR1KEmMEkSJL-WA6yE8TpO7lae2hHMtFaCwtBEijAx0MV1NQikiRhLUIL46gcAUkBhopNA8D04DH14LRUKiCSMu7pBWsaFLMvC4aRq034AyTOseu7tzdR82IiCc3Lxt0kNTGlboNu82ycCJC7tBu1NQTAMAANvXtd0ALoR32xuPlbvlmpMxZQFcEgDlcW47sdTuGjAwiaDBrmsSRsddGCW70X5LEuCXpemLQoQJwMoXhWxdcPoaMddKL4vMProjS7LdcK7AzEXc+33q10TXUMTMqSsTBtD3XJsmvTlsiBoHs83bDtqznio2+7oegaw4H8I7K9VPkrsNAM3PUGpvs3-7GMpMH49XZMUf3IDZ-A7XUumtN7kCrtpRCJxkInFQicTCJxsInFwicfCJxCInFeNnK+edZ60ELgMNyU97yANIlbHiVsl5G0NMaOm5sGakM9nbUQe9iHOxfm7IEDDvbP1vpNd+IcdIT2-hHH6QwkrWk0KQBkJxiDFW+qseqjU8ici7iQkBTdBiTDESlSRO0iolSuAopqpBMEr2wQXEQRca6ELLowCu6jgrWMqE1RuVcW4RWsR3RUnj7xek6FyLktATC6HYCoYmIJtCfiUmUToohCgQFYM8dA7AIYABJBC0FKKkzWjBfi9SUGAHqEcgA}{Open in Shinylive}
+ \if{html}{\out{}}
\if{html}{\out{}}
}
\item{example-2}{
diff --git a/tests/testthat/test_g_expert_cl.R b/tests/testthat/test_g_expert_cl.R
index 01de250e4..41398f0ab 100644
--- a/tests/testthat/test_g_expert_cl.R
+++ b/tests/testthat/test_g_expert_cl.R
@@ -6,29 +6,29 @@ testthat::test_that("coloring_ggplot_call can work with all combinations", {
testthat::expect_equal(
coloring_ggplot_call("ADSL", character(0), character(0), FALSE) %>% deparse(),
- "aes(colour = ADSL)"
+ "ggplot2::aes(colour = ADSL)"
)
testthat::expect_equal(
coloring_ggplot_call("ADSL", "ADSL", character(0), FALSE) %>% deparse(),
- "aes(colour = ADSL, fill = ADSL)"
+ "ggplot2::aes(colour = ADSL, fill = ADSL)"
)
testthat::expect_equal(
coloring_ggplot_call("ADSL", "ADSL", "ADSL", FALSE) %>% deparse(),
- "aes(colour = ADSL, fill = ADSL)"
+ "ggplot2::aes(colour = ADSL, fill = ADSL)"
)
testthat::expect_equal(
coloring_ggplot_call("ADSL", "ADSL", character(0), TRUE) %>% deparse(),
- "aes(colour = ADSL, fill = ADSL)"
+ "ggplot2::aes(colour = ADSL, fill = ADSL)"
)
testthat::expect_equal(
coloring_ggplot_call("ADSL", "ADSL", "ADSL", TRUE) %>% deparse(),
- "aes(colour = ADSL, fill = ADSL, size = ADSL)"
+ "ggplot2::aes(colour = ADSL, fill = ADSL, size = ADSL)"
)
testthat::expect_equal(
coloring_ggplot_call("ADSL", character(0), "ADSL", TRUE) %>% deparse(),
- "aes(colour = ADSL, size = ADSL)"
+ "ggplot2::aes(colour = ADSL, size = ADSL)"
)
})
testthat::test_that("coloring_ggplot_call can work with all combinations without colour_var", {
@@ -39,26 +39,26 @@ testthat::test_that("coloring_ggplot_call can work with all combinations without
testthat::expect_equal(
coloring_ggplot_call(character(0), "ADSL", character(0), FALSE) %>% deparse(),
- "aes(fill = ADSL)"
+ "ggplot2::aes(fill = ADSL)"
)
testthat::expect_equal(
coloring_ggplot_call(character(0), "ADSL", "ADSL", FALSE) %>% deparse(),
- "aes(fill = ADSL)"
+ "ggplot2::aes(fill = ADSL)"
)
testthat::expect_equal(
coloring_ggplot_call(character(0), "ADSL", character(0), TRUE) %>% deparse(),
- "aes(fill = ADSL)"
+ "ggplot2::aes(fill = ADSL)"
)
testthat::expect_equal(
coloring_ggplot_call(character(0), "ADSL", "ADSL", TRUE) %>% deparse(),
- "aes(colour = ADSL, fill = ADSL, size = ADSL)"
+ "ggplot2::aes(colour = ADSL, fill = ADSL, size = ADSL)"
)
})
testthat::test_that("coloring_ggplot_call can work size_var", {
testthat::expect_equal(
coloring_ggplot_call(character(0), character(0), "ADSL", TRUE) %>% deparse(),
- "aes(size = ADSL)"
+ "ggplot2::aes(size = ADSL)"
)
testthat::expect_equal(
coloring_ggplot_call(character(0), character(0), character(0), TRUE),