@@ -54,7 +54,8 @@ def __init__(self, trialsdf, vartypes, binwidth=0.02):
5454 # Filter out cells which don't meet the criteria for minimum spiking, while doing trial
5555 # assignment
5656 vartypes ['duration' ] = 'value'
57- base_df = trialsdf .copy () # Make sure we don't modify the original dataframe
57+ base_df = trialsdf .copy ()
58+ trialsdf = trialsdf .copy () # Make sure we don't modify the original dataframe
5859 trbounds = trialsdf [['trial_start' , 'trial_end' ]] # Get the start/end of trials
5960 # Empty trial duration value to use later
6061 trialsdf ['duration' ] = np .nan
@@ -428,7 +429,7 @@ def denseconv(X, bases):
428429 A = np .zeros ((T + TB - 1 , int (np .sum (indices [kCov , :]))))
429430 for i , j in enumerate (np .argwhere (indices [kCov , :]).flat ):
430431 A [:, i ] = np .convolve (X [:, kCov ], bases [:, j ])
431- BX [:, k : sI [kCov ]] = A [: T , :]
432+ BX [:, k : sI [kCov ]] = A [:T , :]
432433 k = sI [kCov ]
433434 return BX
434435
@@ -444,5 +445,5 @@ def convbasis(stim, bases, offset=0):
444445 if offset < 0 :
445446 X = X [- offset :, :]
446447 elif offset > 0 :
447- X = X [: - ( 1 + offset ) , :]
448+ X = X [:- offset , :]
448449 return X
0 commit comments