|
| 1 | +""" |
| 2 | +This file contains integration tests. We use the CLI to exercise functionality of |
| 3 | +various DFFML classes and constructs. |
| 4 | +""" |
| 5 | +import re |
| 6 | +import os |
| 7 | +import io |
| 8 | +import json |
| 9 | +import inspect |
| 10 | +import pathlib |
| 11 | +import asyncio |
| 12 | +import contextlib |
| 13 | +import unittest.mock |
| 14 | +from typing import Dict, Any |
| 15 | + |
| 16 | +from dffml.repo import Repo |
| 17 | +from dffml.base import config |
| 18 | +from dffml.df.types import Definition, Operation, DataFlow, Input |
| 19 | +from dffml.df.base import op |
| 20 | +from dffml.cli.cli import CLI |
| 21 | +from dffml.model.model import Model |
| 22 | +from dffml.service.dev import Develop |
| 23 | +from dffml.util.packaging import is_develop |
| 24 | +from dffml.util.entrypoint import load |
| 25 | +from dffml.config.config import BaseConfigLoader |
| 26 | +from dffml.util.asynctestcase import AsyncTestCase |
| 27 | + |
| 28 | +from .common import IntegrationCLITestCase |
| 29 | + |
| 30 | + |
| 31 | +class TestScikitClassification(IntegrationCLITestCase): |
| 32 | + async def test_run(self): |
| 33 | + self.required_plugins("dffml-model-scikit") |
| 34 | + # Create the training data |
| 35 | + train_filename = self.mktempfile() + ".csv" |
| 36 | + pathlib.Path(train_filename).write_text( |
| 37 | + inspect.cleandoc( |
| 38 | + """ |
| 39 | + Clump_Thickness,Uniformity_of_Cell_Size,Uniformity_of_Cell_Shape,Marginal_Adhesion,Single_Epithelial_Cell_Size,Bare_Nuclei,Bland_Chromatin,Normal_Nucleoli,Mitoses,Class |
| 40 | + 3,4,5,2,6,8,4,1,1,4 |
| 41 | + 1,1,1,1,3,2,2,1,1,2 |
| 42 | + 3,1,1,3,8,1,5,8,1,2 |
| 43 | + 8,8,7,4,10,10,7,8,7,4 |
| 44 | + """ |
| 45 | + ) |
| 46 | + + "\n" |
| 47 | + ) |
| 48 | + # Create the test data |
| 49 | + test_filename = self.mktempfile() + ".csv" |
| 50 | + pathlib.Path(test_filename).write_text( |
| 51 | + inspect.cleandoc( |
| 52 | + """ |
| 53 | + Clump_Thickness,Uniformity_of_Cell_Size,Uniformity_of_Cell_Shape,Marginal_Adhesion,Single_Epithelial_Cell_Size,Bare_Nuclei,Bland_Chromatin,Normal_Nucleoli,Mitoses,Class |
| 54 | + 1,1,1,1,1,1,3,1,1,2 |
| 55 | + 7,2,4,1,6,10,5,4,3,4 |
| 56 | + """ |
| 57 | + ) |
| 58 | + + "\n" |
| 59 | + ) |
| 60 | + # Create the prediction data |
| 61 | + predict_filename = self.mktempfile() + ".csv" |
| 62 | + pathlib.Path(predict_filename).write_text( |
| 63 | + inspect.cleandoc( |
| 64 | + """ |
| 65 | + Clump_Thickness,Uniformity_of_Cell_Size,Uniformity_of_Cell_Shape,Marginal_Adhesion,Single_Epithelial_Cell_Size,Bare_Nuclei,Bland_Chromatin,Normal_Nucleoli,Mitoses,Class |
| 66 | + 5,3,3,3,6,10,3,1,1 |
| 67 | + """ |
| 68 | + ) |
| 69 | + + "\n" |
| 70 | + ) |
| 71 | + # Features |
| 72 | + features = "-model-features def:Clump_Thickness:int:1 def:Uniformity_of_Cell_Size:int:1 def:Uniformity_of_Cell_Shape:int:1 def:Marginal_Adhesion:int:1 def:Single_Epithelial_Cell_Size:int:1 def:Bare_Nuclei:int:1 def:Bland_Chromatin:int:1 def:Normal_Nucleoli:int:1 def:Mitoses:int:1".split() |
| 73 | + # Train the model |
| 74 | + await CLI.cli( |
| 75 | + "train", |
| 76 | + "-model", |
| 77 | + "scikitsvc", |
| 78 | + *features, |
| 79 | + "-model-predict", |
| 80 | + "Class", |
| 81 | + "-sources", |
| 82 | + "training_data=csv", |
| 83 | + "-source-filename", |
| 84 | + train_filename, |
| 85 | + ) |
| 86 | + # Assess accuracy |
| 87 | + await CLI.cli( |
| 88 | + "accuracy", |
| 89 | + "-model", |
| 90 | + "scikitsvc", |
| 91 | + *features, |
| 92 | + "-model-predict", |
| 93 | + "Class", |
| 94 | + "-sources", |
| 95 | + "test_data=csv", |
| 96 | + "-source-filename", |
| 97 | + test_filename, |
| 98 | + ) |
| 99 | + # Ensure JSON output works as expected (#261) |
| 100 | + with contextlib.redirect_stdout(self.stdout): |
| 101 | + # Make prediction |
| 102 | + await CLI._main( |
| 103 | + "predict", |
| 104 | + "all", |
| 105 | + "-model", |
| 106 | + "scikitsvc", |
| 107 | + *features, |
| 108 | + "-model-predict", |
| 109 | + "Class", |
| 110 | + "-sources", |
| 111 | + "predict_data=csv", |
| 112 | + "-source-filename", |
| 113 | + predict_filename, |
| 114 | + ) |
| 115 | + results = json.loads(self.stdout.getvalue()) |
| 116 | + self.assertTrue(isinstance(results, list)) |
| 117 | + self.assertTrue(results) |
| 118 | + results = results[0] |
| 119 | + self.assertIn("prediction", results) |
| 120 | + results = results["prediction"] |
| 121 | + self.assertIn("value", results) |
| 122 | + results = results["value"] |
| 123 | + self.assertEqual(4, results) |
0 commit comments