@@ -328,59 +328,34 @@ class DNNClassifierModel(Model):
328328 """
329329 Implemented using Tensorflow's DNNClassifier.
330330
331- .. code-block:: console
332-
333- $ wget http://download.tensorflow.org/data/iris_training.csv
334- $ wget http://download.tensorflow.org/data/iris_test.csv
335- $ head iris_training.csv
336- $ sed -i 's/.*setosa,versicolor,virginica/SepalLength,SepalWidth,PetalLength,PetalWidth,classification/g' *.csv
337- $ head iris_training.csv
338- $ dffml train \\
339- -model tfdnnc \\
340- -model-epochs 3000 \\
341- -model-steps 20000 \\
342- -model-predict classification:int:1 \\
343- -model-classifications 0 1 2 \\
344- -model-clstype int \\
345- -sources iris=csv \\
346- -source-filename iris_training.csv \\
347- -model-features \\
348- SepalLength:float:1 \\
349- SepalWidth:float:1 \\
350- PetalLength:float:1 \\
351- PetalWidth:float:1 \\
352- -log debug
353- ... lots of output ...
354- $ dffml accuracy \\
355- -model tfdnnc \\
356- -model-predict classification:int:1 \\
357- -model-classifications 0 1 2 \\
358- -model-clstype int \\
359- -sources iris=csv \\
360- -source-filename iris_test.csv \\
361- -model-features \\
362- SepalLength:float:1 \\
363- SepalWidth:float:1 \\
364- PetalLength:float:1 \\
365- PetalWidth:float:1 \\
366- -log critical
331+ First we create the training and testing datasets
332+
333+ .. literalinclude:: /../model/tensorflow/examples/tfdnnc/train_data.sh
334+
335+ .. literalinclude:: /../model/tensorflow/examples/tfdnnc/test_data.sh
336+
337+ Train the model
338+
339+ .. literalinclude:: /../model/tensorflow/examples/tfdnnc/train.sh
340+
341+ Assess the accuracy
342+
343+ .. literalinclude:: /../model/tensorflow/examples/tfdnnc/accuracy.sh
344+
345+ Output
346+
347+ .. code-block::
348+
367349 0.99996233782
368- $ dffml predict all \\
369- -model tfdnnc \\
370- -model-predict classification:int:1 \\
371- -model-classifications 0 1 2 \\
372- -model-clstype int \\
373- -sources iris=csv \\
374- -source-filename iris_test.csv \\
375- -model-features \\
376- SepalLength:float:1 \\
377- SepalWidth:float:1 \\
378- PetalLength:float:1 \\
379- PetalWidth:float:1 \\
380- -caching \\
381- -log critical \\
382- > results.json
383- $ head -n 33 results.json
350+
351+ Make a prediction
352+
353+ .. literalinclude:: /../model/tensorflow/examples/tfdnnc/predict.sh
354+
355+ Output
356+
357+ .. code-block:: json
358+
384359 [
385360 {
386361 "extra": {},
@@ -401,25 +376,11 @@ class DNNClassifierModel(Model):
401376 },
402377 "key": "0"
403378 },
404- {
405- "extra": {},
406- "features": {
407- "PetalLength": 5.4,
408- "PetalWidth": 2.1,
409- "SepalLength": 6.9,
410- "SepalWidth": 3.1,
411- "classification": 2
412- },
413- "last_updated": "2019-07-31T02:00:12Z",
414- "prediction": {
415- "classification":
416- {
417- "confidence": 0.9999984502792358,
418- "value": 2
419- }
420- },
421- "key": "1"
422- },
379+ ]
380+
381+ Example usage of Tensorflow DNNClassifier model using python API
382+
383+ .. literalinclude:: /../model/tensorflow/examples/tfdnnc/tfdnnc.py
423384
424385 """
425386
0 commit comments