You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
* enable deepspeed in docker and update the llm readme accordingly
* update compile_bundle and README.md
remove DOCKER_BUILDKIT
* Update Dockerfile remove BUILDKIT comments
* Update env_setup.sh fix llm_eval package name
* Update env_setup.sh set llm_eval version by dependency_version.yml
* Update dependency_version.yml add llm_eval version 0.3.0
* update Dockerfile.compile from compile_bundle_main
* add ccl in compile bundle, copy from compile_bundle_main
If you are planning to use DeepSpeed for execution, please use a bare-metal environment directly and follow 2.b session for the environment setup. Otherwise, we recommend you follow 2.a session with Docker, where the environment is already configured.
43
-
44
-
a. (Recommended) Build a Docker container from the provided `Dockerfile` for single-instance executions.
43
+
# Build an image with the provided Dockerfile by compiling Intel® Extension for PyTorch* from source
44
+
docker build -f examples/gpu/inference/python/llm/Dockerfile --build-arg GID_RENDER=$(getent group render | sed -E 's,^render:[^:]*:([^:]*):.*$,\1,') --build-arg COMPILE=ON -t ipex-llm:2.1.20 .
45
45
46
-
```bash
47
-
# Build an image with the provided Dockerfile by compiling Intel® Extension for PyTorch* from source
48
-
DOCKER_BUILDKIT=1 docker build -f examples/gpu/inference/python/llm/Dockerfile --build-arg GID_RENDER=$(getent group render | sed -E 's,^render:[^:]*:([^:]*):.*$,\1,') --build-arg COMPILE=ON -t ipex-llm:2.1.10 .
46
+
# Build an image with the provided Dockerfile by installing from Intel® Extension for PyTorch* prebuilt wheel files
47
+
docker build -f examples/gpu/inference/python/llm/Dockerfile --build-arg GID_RENDER=$(getent group render | sed -E 's,^render:[^:]*:([^:]*):.*$,\1,') -t ipex-llm:2.1.20 .
49
48
50
-
# Build an image with the provided Dockerfile by installing from Intel® Extension for PyTorch* prebuilt wheel files
51
-
DOCKER_BUILDKIT=1 docker build -f examples/gpu/inference/python/llm/Dockerfile --build-arg GID_RENDER=$(getent group render | sed -E 's,^render:[^:]*:([^:]*):.*$,\1,') -t ipex-llm:2.1.10 .
49
+
# Run the container with command below
50
+
docker run --privileged -it --rm --device /dev/dri:/dev/dri -v /dev/dri/by-path:/dev/dri/by-path \
docker run --rm -it --privileged --device=/dev/dri --ipc=host ipex-llm:2.1.10 bash
55
54
56
-
# When the command prompt shows inside the docker container, enter llm examples directory
57
-
cd llm
58
-
```
59
-
b. Alternatively, use the provided environment configuration script to set up environment without using a docker container:
55
+
# When the command prompt shows inside the docker container, enter llm examples directory
56
+
cd llm
60
57
61
-
Make sure the driver and Base Toolkit are installed without using a docker container. Refer to [Installation Guide](https://intel.github.io/intel-extension-for-pytorch/#installation?platform=gpu&version=v2.1.10%2Bxpu&os=linux%2Fwsl2&package=source).
62
-
63
-
OneCCL is also required if you run with DeepSpeed. We recommend to use apt/yum/dnf to install the oneCCL package. Refer to [Base Toolkit Installation](https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit-download.html) for adding the APT/YUM/DNF key and sources for first-time users.
58
+
# Activate environment variables
59
+
source ./tools/env_activate.sh
60
+
```
64
61
65
-
Example command:
62
+
### Conda-based environment setup with compilation from source
Make sure the driver and Base Toolkit are installed without using a docker container. Refer to [Installation Guide](https://intel.github.io/intel-extension-for-pytorch/#installation?platform=gpu&version=v2.1.10%2Bxpu&os=linux%2Fwsl2&package=source).
72
65
73
66
74
-
```bash
75
-
# Make sure you have GCC >= 11 is installed on your system.
76
-
# Create a conda environment
77
-
conda create -n llm python=3.10 -y
78
-
conda activate llm
79
67
80
-
# Setup the environment with the provided script
81
-
cd examples/gpu/inference/python/llm
82
-
# If you want to install Intel® Extension for PyTorch\* from prebuilt wheel files, use the command below:
83
-
bash ./tools/env_setup.sh 7
84
-
# If you want to install Intel® Extension for PyTorch\* from source, use the commands below:
- `DPCPP_ROOT` is the path to the DPC++ compiler. By default, it is `/opt/intel/oneapi/compiler/latest`.<br />
95
-
- `ONEMKL_ROOT` is the path to oneMKL. By default, it is `/opt/intel/oneapi/mkl/latest`.<br />
96
-
- `ONECCL_ROOT` is the path to oneCCL. By default, it is `/opt/intel/oneapi/ccl/latest`.<br />
97
-
- `MPI_ROOT` is the path to oneAPI MPI library. By default, it is `/opt/intel/oneapi/mpi/latest`.<br />
98
-
- `AOT` is a text string to enable`Ahead-Of-Time` compilation for specific GPU models. Check [tutorial](../../../../../docs/tutorials/technical_details/AOT.md) for details.<br />
68
+
```bash
99
69
100
-
3. Set necessary environment variables with the environment variables activation script.
70
+
# Get the Intel® Extension for PyTorch* source code
-`AOT` is a text string to enable `Ahead-Of-Time` compilation for specific GPU models. Check [tutorial](../../../../../docs/tutorials/technical_details/AOT.md) for details.<br />
0 commit comments