@@ -263,7 +263,7 @@ at::Tensor& dil_add_common(
263263 CHECK_DNNL_OP_PRE_COND (self);
264264 CHECK_DNNL_OP_PRE_COND (other);
265265
266- TORCH_CHECK (self.sizes ().equals (other.sizes ()),
266+ IPEX_CHECK (self.sizes ().equals (other.sizes ()),
267267 " dil add not support broadcast yet" );
268268
269269 dbl::comm::reorder_to_bf16_for_mix_prec (self);
@@ -308,7 +308,7 @@ at::Tensor& dil_mul_common(
308308 CHECK_DNNL_OP_PRE_COND (self);
309309 CHECK_DNNL_OP_PRE_COND (other);
310310
311- TORCH_CHECK (self.sizes ().equals (other.sizes ()),
311+ IPEX_CHECK (self.sizes ().equals (other.sizes ()),
312312 " dil mul not support broadcast yet" );
313313
314314 dbl::comm::reorder_to_bf16_for_mix_prec (self);
@@ -438,7 +438,7 @@ at::Tensor& dil_baddbmm_common(
438438
439439 TORCH_INTERNAL_ASSERT_DEBUG_ONLY (batch1.dim () == 3 && batch2.dim () == 3 );
440440 dil::dims inferred_size{batch1.size (0 ), batch1.size (1 ), batch2.size (2 )};
441- TORCH_CHECK (self.sizes ().equals (inferred_size),
441+ IPEX_CHECK (self.sizes ().equals (inferred_size),
442442 " dil baddbmm not support broadcast yet" );
443443
444444 dbl::comm::reorder_to_bf16_for_mix_prec (self);
@@ -506,7 +506,7 @@ at::Tensor& dil_addmm_common(
506506
507507 TORCH_INTERNAL_ASSERT_DEBUG_ONLY (mat1.dim () == 2 && mat2.dim () == 2 );
508508 dil::dims inferred_size{mat1.size (0 ), mat2.size (1 )};
509- TORCH_CHECK (self.sizes ().equals (inferred_size),
509+ IPEX_CHECK (self.sizes ().equals (inferred_size),
510510 " dil addmm not support broadcast yet" );
511511
512512 dbl::comm::reorder_to_bf16_for_mix_prec (self);
@@ -568,7 +568,7 @@ at::Tensor& dil_addbmm_common(
568568
569569 TORCH_INTERNAL_ASSERT_DEBUG_ONLY (batch1.dim () == 3 && batch2.dim () == 3 );
570570 dil::dims inferred_size{batch1.size (1 ), batch2.size (2 )};
571- TORCH_CHECK (self.sizes ().equals (inferred_size),
571+ IPEX_CHECK (self.sizes ().equals (inferred_size),
572572 " dil addbmm not support broadcast yet" );
573573
574574 dbl::comm::reorder_to_bf16_for_mix_prec (self);
@@ -635,7 +635,7 @@ at::Tensor AtenIpexCPUDev::dil_linear(
635635 DEBUG (" AtenIpexCPUDev::dil_linear\n " );
636636 CHECK_DNNL_OP_PRE_COND (self);
637637 CHECK_DNNL_OP_PRE_COND (weight);
638- TORCH_CHECK (self.dim () >= 2 ,
638+ IPEX_CHECK (self.dim () >= 2 ,
639639 " dil_linear: input needs to has dim at least 2, input dim " , self.dim ());
640640
641641 dbl::comm::reorder_to_bf16_for_mix_prec (self);
@@ -672,7 +672,7 @@ at::Tensor AtenIpexCPUDev::dil_linear_fuse_relu(
672672 DEBUG (" AtenIpexCPUDev::dil_linear\n " );
673673 CHECK_DNNL_OP_PRE_COND (self);
674674 CHECK_DNNL_OP_PRE_COND (weight);
675- TORCH_CHECK (self.dim () >= 2 ,
675+ IPEX_CHECK (self.dim () >= 2 ,
676676 " dil_linear: input needs to has dim at least 2, input dim " , self.dim ());
677677
678678 dbl::comm::reorder_to_bf16_for_mix_prec (self);
@@ -791,7 +791,7 @@ std::tuple<at::Tensor, at::Tensor, at::Tensor> AtenIpexCPUDev::dil_linear_backwa
791791std::tuple<at::Tensor, at::Tensor> _dil_dropout (
792792 const at::Tensor& self,
793793 double ratio) {
794- TORCH_CHECK (
794+ IPEX_CHECK (
795795 ratio >= 0 && ratio < 1 && self.numel () != 0 ,
796796 " dropout probability has to be between 0 and 1, but got " ,
797797 ratio);
@@ -845,9 +845,9 @@ std::tuple<at::Tensor, at::Tensor, at::Tensor> AtenIpexCPUDev::dil_native_batch_
845845 DEBUG (" AtenIpexCPUDev::dil_native_batch_norm\n " );
846846 CHECK_DNNL_OP_PRE_COND (input);
847847 CHECK_DNNL_OP_PRE_COND (weight);
848- TORCH_CHECK (input.dim () == 4 || input.dim () == 5 ,
848+ IPEX_CHECK (input.dim () == 4 || input.dim () == 5 ,
849849 " mkldnn_batch_norm: currently mkldnn only support 2d and 3d batchnorm" );
850- TORCH_CHECK (weight.defined () && bias.defined (),
850+ IPEX_CHECK (weight.defined () && bias.defined (),
851851 " mkldnn_batch_norm: currently mkldnn only support affine model" );
852852
853853 dbl::comm::reorder_to_bf16_for_mix_prec (input);
@@ -906,7 +906,7 @@ std::tuple<at::Tensor, at::Tensor, at::Tensor> AtenIpexCPUDev::dil_native_batch_
906906 CHECK_DNNL_OP_PRE_COND (input);
907907 CHECK_DNNL_OP_PRE_COND (weight);
908908
909- TORCH_CHECK (train, " mkldnn_batch_norm_backward: currently mkldnn only support train model" );
909+ IPEX_CHECK (train, " mkldnn_batch_norm_backward: currently mkldnn only support train model" );
910910 auto grad_output_contiguous = grad_output.is_contiguous () ? grad_output : grad_output.contiguous ();
911911
912912 dbl::comm::reorder_to_bf16_for_mix_prec (grad_output);
@@ -960,7 +960,7 @@ at::Tensor AtenIpexCPUDev::dil_avg_pool2d(
960960 c10::optional<int64_t > divisor_override) {
961961 DEBUG (" AtenIpexCPUDev::dil_avg_pool2d\n " );
962962 CHECK_DNNL_OP_PRE_COND (input);
963- TORCH_CHECK (!divisor_override.has_value (),
963+ IPEX_CHECK (!divisor_override.has_value (),
964964 " dil_avg_pooling operator does not support divisor" );
965965
966966 dbl::comm::reorder_to_bf16_for_mix_prec (input);
@@ -986,7 +986,7 @@ at::Tensor AtenIpexCPUDev::dil_avg_pool3d(
986986 c10::optional<int64_t > divisor_override) {
987987 DEBUG (" AtenIpexCPUDev::dil_avg_pool3d\n " );
988988 CHECK_DNNL_OP_PRE_COND (input);
989- TORCH_CHECK (!divisor_override.has_value (),
989+ IPEX_CHECK (!divisor_override.has_value (),
990990 " dil_avg_pooling operator does not support divisor" );
991991
992992 dbl::comm::reorder_to_bf16_for_mix_prec (input);
@@ -1016,8 +1016,8 @@ at::Tensor AtenIpexCPUDev::dil_adaptive_avg_pool2d(
10161016 for (int64_t i = 2 ; i < input.dim (); ++i) {
10171017 auto s1 = input.size (i);
10181018 auto s2 = output_size_vec[i - 2 ];
1019- TORCH_CHECK (s2 != 0 , " output size can not be zero" );
1020- TORCH_CHECK (
1019+ IPEX_CHECK (s2 != 0 , " output size can not be zero" );
1020+ IPEX_CHECK (
10211021 s1 % s2 == 0 ,
10221022 " input size is not divisible by the output size is not supported yet" );
10231023 kernel_size[i - 2 ] = s1 / s2;
@@ -1144,8 +1144,8 @@ at::Tensor AtenIpexCPUDev::dil_adaptive_avg_pool2d_backward(
11441144 for (size_t i = 2 ; i < input.dim (); ++i) {
11451145 auto s1 = input.size (i);
11461146 auto s2 = output_size_vec[i];
1147- TORCH_CHECK (s2 != 0 , " output size can not be zero" );
1148- TORCH_CHECK (
1147+ IPEX_CHECK (s2 != 0 , " output size can not be zero" );
1148+ IPEX_CHECK (
11491149 s1 % s2 == 0 ,
11501150 " input size is not divisible by the output size is not supported yet" );
11511151 kernel_size[i - 2 ] = s1 / s2;
@@ -1365,7 +1365,7 @@ at::Tensor AtenIpexCPUDev::dil_transpose(const at::Tensor & self, int64_t dim0,
13651365 dbl::comm::reorder_to_bf16_for_mix_prec (self);
13661366
13671367 dil::tensor x = dbl::comm::try_gen_dil_tensor (self);
1368- TORCH_CHECK (x.ndims () > 0 , " DNNL transpose cannot generate DNNL tensor for the input aten Tensor. input tensor dim: " , self.dim ());
1368+ IPEX_CHECK (x.ndims () > 0 , " DNNL transpose cannot generate DNNL tensor for the input aten Tensor. input tensor dim: " , self.dim ());
13691369 dil::tensor y;
13701370 std::vector<int > axes (x.ndims ());
13711371 std::iota (axes.begin (), axes.end (), 0 );
@@ -1379,7 +1379,7 @@ at::Tensor AtenIpexCPUDev::dil_transpose(const at::Tensor & self, int64_t dim0,
13791379inline void check_cat_no_zero_dim (at::TensorList tensors) {
13801380 for (size_t i = 0 ; i < tensors.size (); ++i) {
13811381 auto & t = tensors[i];
1382- TORCH_CHECK (t.dim () > 0 ,
1382+ IPEX_CHECK (t.dim () > 0 ,
13831383 " zero-dimensional tensor (at position " , i, " ) cannot be concatenated" );
13841384 }
13851385}
@@ -1394,7 +1394,7 @@ at::Tensor& AtenIpexCPUDev::dil_cat_out(at::Tensor& result, at::TensorList tenso
13941394 dim = at::legacy_cat_wrap_dim (dim, tensors);
13951395 std::vector<dil::tensor> x;
13961396 for (auto i =0 ; i< tensors.size (); i++) {
1397- TORCH_CHECK (!(tensors[i].dim () == 1 && tensors[i].sizes ()[0 ] == 0 ),
1397+ IPEX_CHECK (!(tensors[i].dim () == 1 && tensors[i].sizes ()[0 ] == 0 ),
13981398 " Currently Mkldnn cat operators do not support empty tensor." );
13991399
14001400 dbl::comm::reorder_to_bf16_for_mix_prec (tensors[i]);
@@ -1416,7 +1416,7 @@ at::Tensor AtenIpexCPUDev::dil_cat(at::TensorList tensors, int64_t dim) {
14161416 std::vector<dil::tensor> x;
14171417 at::Tensor tensors_contiguous[tensors.size ()];
14181418 for (auto i = 0 ; i < tensors.size (); i++) {
1419- TORCH_CHECK (!(tensors[i].dim () == 1 && tensors[i].sizes ()[0 ] == 0 ),
1419+ IPEX_CHECK (!(tensors[i].dim () == 1 && tensors[i].sizes ()[0 ] == 0 ),
14201420 " Currently Mkldnn cat operators do not support empty tensor." );
14211421 tensors_contiguous[i] = tensors[i].is_contiguous () ? tensors[i] : tensors[i].contiguous ();
14221422 dbl::comm::reorder_to_bf16_for_mix_prec (tensors_contiguous[i]);
@@ -1439,7 +1439,7 @@ std::vector<at::Tensor> AtenIpexCPUDev::dil_split_with_sizes(const at::Tensor& s
14391439 std::vector<int32_t > sizes;
14401440 for (auto i = 0 ; i < num_splits; i++) {
14411441 auto length = split_sizes[i];
1442- TORCH_CHECK (length >= 0 ,
1442+ IPEX_CHECK (length >= 0 ,
14431443 " split_with_sizes expects split_sizes have only non-negative " ,
14441444 " entries, but got split_sizes=" , split_sizes);
14451445 sizes.push_back ((int32_t )length);
0 commit comments