11Examples
22========
33
4+ ** Note:** For examples on CPU, please check [ here] ( ../../../cpu/latest/tutorials/examples.html ) .
5+
46## Training
57
68### Single-instance Training
@@ -24,7 +26,7 @@ criterion = ...
2426optimizer = ...
2527model.train()
2628# For Float32
27- model, optimizer = ipex.optimize(model, optimizer=optimizer, dtype=torch.float32 )
29+ model, optimizer = ipex.optimize(model, optimizer=optimizer)
2830# For BFloat16
2931model, optimizer = ipex.optimize(model, optimizer=optimizer, dtype=torch.bfloat16)
3032...
@@ -70,11 +72,11 @@ model = torchvision.models.resnet50()
7072criterion = torch.nn.CrossEntropyLoss()
7173optimizer = torch.optim.SGD(model.parameters(), lr = LR, momentum=0.9)
7274model.train()
73- #################################### code changes ######### #######################
75+ ######################## code changes #######################
7476model = model.to("xpu")
7577criterion = criterion.to("xpu")
76- model, optimizer = ipex.optimize(model, optimizer=optimizer, dtype=torch.float32 )
77- #################################### code changes ######### #######################
78+ model, optimizer = ipex.optimize(model, optimizer=optimizer)
79+ ######################## code changes #######################
7880
7981for batch_idx, (data, target) in enumerate(train_loader):
8082 ########## code changes ##########
@@ -189,11 +191,11 @@ model = models.resnet50(pretrained=True)
189191model.eval()
190192data = torch.rand(1, 3, 224, 224)
191193
192- #################### code changes ######### #######
194+ ######## code changes #######
193195model = model.to("xpu")
194196data = data.to("xpu")
195- model = ipex.optimize(model, dtype=torch.float32 )
196- #################### code changes ######### #######
197+ model = ipex.optimize(model)
198+ ######## code changes #######
197199
198200with torch.no_grad():
199201 model(data)
@@ -216,11 +218,11 @@ batch_size = 1
216218seq_length = 512
217219data = torch.randint(vocab_size, size=[batch_size, seq_length])
218220
219- #################### code changes ######### #######
221+ ######## code changes #######
220222model = model.to("xpu")
221223data = data.to("xpu")
222- model = ipex.optimize(model, dtype=torch.float32 )
223- #################### code changes ######### #######
224+ model = ipex.optimize(model)
225+ ######## code changes #######
224226
225227with torch.no_grad():
226228 model(data)
@@ -243,11 +245,11 @@ model = models.resnet50(pretrained=True)
243245model.eval()
244246data = torch.rand(1, 3, 224, 224)
245247
246- #################### code changes ######### #######
248+ ######## code changes #######
247249model = model.to("xpu")
248250data = data.to("xpu")
249- model = ipex.optimize(model, dtype=torch.float32 )
250- #################### code changes ######### #######
251+ model = ipex.optimize(model)
252+ ######## code changes #######
251253
252254with torch.no_grad():
253255 d = torch.rand(1, 3, 224, 224)
@@ -277,11 +279,11 @@ batch_size = 1
277279seq_length = 512
278280data = torch.randint(vocab_size, size=[batch_size, seq_length])
279281
280- #################### code changes ######### #######
282+ ######## code changes #######
281283model = model.to("xpu")
282284data = data.to("xpu")
283- model = ipex.optimize(model, dtype=torch.float32 )
284- #################### code changes ######### #######
285+ model = ipex.optimize(model)
286+ ######## code changes #######
285287
286288with torch.no_grad():
287289 d = torch.randint(vocab_size, size=[batch_size, seq_length])
@@ -352,9 +354,9 @@ model = ipex.optimize(model, dtype=torch.bfloat16)
352354#################### code changes #################
353355
354356with torch.no_grad():
355- ################################# code changes ############## ########################
357+ ########################### code changes ########################
356358 with torch.xpu.amp.autocast(enabled=True, dtype=torch.bfloat16):
357- ################################# code changes ############## ########################
359+ ########################### code changes ########################
358360 model(data)
359361```
360362
@@ -616,10 +618,10 @@ model = models.resnet50(pretrained=True)
616618model.eval()
617619data = torch.rand(1, 3, 224, 224)
618620
619- #################### code changes ############### #####
621+ ##### code changes #####
620622model = model.to("xpu")
621623data = data.to("xpu")
622- #################### code changes ############### #####
624+ ##### code changes #####
623625
624626with torch.no_grad():
625627 d = torch.rand(1, 3, 224, 224)
@@ -670,11 +672,11 @@ data = torch.rand(1, 3, 224, 224)
670672model = model.to(memory_format=torch.channels_last)
671673data = data.to(memory_format=torch.channels_last)
672674
673- #################### code changes ####### #########
675+ ########## code changes #########
674676model = model.to("xpu")
675677data = data.to("xpu")
676- model = torch.xpu.optimize(model, dtype=torch.float32 )
677- #################### code changes ####### #########
678+ model = torch.xpu.optimize(model)
679+ ########## code changes #########
678680
679681with torch.no_grad():
680682 model(data)
0 commit comments