Skip to content

Commit b52da1e

Browse files
ZhaoqiongZjingxu10
andauthored
Update doc 2.1.10+xpu rc3 (#3587)
* update 2.0.1 to 2.1.10+xpu * update LLM README, delete sub module name, add description for only support float16 * update int4 and float8 in features page * update links for CPU and GPU tutorial * Use oneCCL 2021.11.1-6 for torch-ccl --------- Co-authored-by: Jing Xu <[email protected]>
1 parent ba3e58c commit b52da1e

File tree

19 files changed

+262
-558
lines changed

19 files changed

+262
-558
lines changed

README.md

Lines changed: 11 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,12 @@
1-
# Intel® Extension for PyTorch\*
1+
<div align="center">
2+
3+
Intel® Extension for Pytorch*
4+
===========================
5+
6+
[💻Examples](./docs/tutorials/examples.md)&nbsp;&nbsp;&nbsp;|&nbsp;&nbsp;&nbsp;[📖CPU Documentations](https://intel.github.io/intel-extension-for-pytorch/cpu/latest/)&nbsp;&nbsp;&nbsp;|&nbsp;&nbsp;&nbsp;[📖GPU Documentations](https://intel.github.io/intel-extension-for-pytorch/xpu/latest/)
7+
</div>
8+
9+
210

311
Intel® Extension for PyTorch\* extends PyTorch\* with up-to-date features optimizations for an extra performance boost on Intel hardware. Optimizations take advantage of AVX-512 Vector Neural Network Instructions (AVX512 VNNI) and Intel® Advanced Matrix Extensions (Intel® AMX) on Intel CPUs as well as Intel X<sup>e</sup> Matrix Extensions (XMX) AI engines on Intel discrete GPUs. Moreover, through PyTorch\* `xpu` device, Intel® Extension for PyTorch\* provides easy GPU acceleration for Intel discrete GPUs with PyTorch\*.
412

@@ -31,10 +39,10 @@ Compilation instruction of the latest CPU code base `main` branch can be found a
3139
You can install Intel® Extension for PyTorch\* for GPU via command below.
3240

3341
```bash
34-
python -m pip install torch==2.0.1a0 torchvision==0.15.2a0 intel_extension_for_pytorch==2.0.110+xpu -f https://developer.intel.com/ipex-whl-stable-xpu
42+
python -m pip install torch==2.1.0a0 torchvision==0.16.0a0 intel_extension_for_pytorch==2.1.10+xpu -f https://developer.intel.com/ipex-whl-stable-xpu
3543
```
3644

37-
**Note:** The patched PyTorch 2.0.1 is required to work with Intel® Extension for PyTorch\* on Intel® graphics card for now.
45+
**Note:** The patched PyTorch 2.1.0 is required to work with Intel® Extension for PyTorch\* on Intel® graphics card for now.
3846

3947
More installation methods can be found at [GPU Installation Guide](https://intel.github.io/intel-extension-for-pytorch/xpu/latest/tutorials/installation.html).
4048

dependency_version.yml

Lines changed: 8 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -4,17 +4,17 @@ gcc:
44
llvm:
55
version: 16.0.6
66
pytorch:
7-
version: 2.0.1a0
7+
version: 2.1.0a0
88
commit: v2.1.0
99
torchaudio:
10-
version: 2.0.1a0
10+
version: 2.1.0a0
1111
commit: v2.1.0
1212
torchvision:
1313
version: 0.16.0a0
1414
commit: v0.16.0
1515
torch-ccl:
1616
repo: https://github.com/intel/torch-ccl.git
17-
commit: c8f89db1639558c1149c4d0eecf90c980064f609
17+
commit: 5f20135ccf8f828738cb3bc5a5ae7816df8100ae
1818
version: 2.1.100+xpu
1919
deepspeed:
2020
repo: https://github.com/microsoft/DeepSpeed.git
@@ -28,3 +28,8 @@ transformers:
2828
commit: v4.31.0
2929
protobuf:
3030
version: 3.20.3
31+
basekit:
32+
dpcpp-cpp-rt:
33+
version: 2024.0.0
34+
mkl-dpcpp:
35+
version: 2024.0.0

docker/Dockerfile.compile

Lines changed: 1 addition & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -27,8 +27,7 @@ RUN apt update && \
2727
gnupg \
2828
gpg-agent
2929
COPY ./tools/basekit_driver_install_helper.sh .
30-
RUN bash ./basekit_driver_install_helper.sh add-apt-repo && \
31-
bash ./basekit_driver_install_helper.sh driver
30+
RUN bash ./basekit_driver_install_helper.sh driver
3231

3332
ARG GID_RENDER=109
3433
RUN useradd -m -s /bin/bash ubuntu && \

docker/build.sh

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -15,9 +15,9 @@ if [[ ${IMAGE_NAME} != "" ]]; then
1515
--build-arg LEVEL_ZERO_DEV_VER=1.13.1-719~22.04 \
1616
--build-arg DPCPP_VER=2024.0.0-49819 \
1717
--build-arg MKL_VER=2024.0.0-49656 \
18-
--build-arg TORCH_VERSION=2.0.1a0+cxx11.abi \
19-
--build-arg IPEX_VERSION=2.0.110+xpu \
20-
--build-arg TORCHVISION_VERSION=0.15.2a0+cxx11.abi \
18+
--build-arg TORCH_VERSION=2.1.0a0+cxx11.abi \
19+
--build-arg IPEX_VERSION=2.1.10+xpu \
20+
--build-arg TORCHVISION_VERSION=0.16.0a0+cxx11.abi \
2121
--build-arg TORCH_WHL_URL=https://pytorch-extension.intel.com/release-whl/stable/xpu/us/ \
2222
--build-arg IPEX_WHL_URL=https://pytorch-extension.intel.com/release-whl/stable/xpu/us/ \
2323
--build-arg TORCHVISION_WHL_URL=https://pytorch-extension.intel.com/release-whl/stable/xpu/us/ \

docs/tutorials/api_doc.rst

Lines changed: 3 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -6,6 +6,7 @@ Device-Agnostic
66

77
.. currentmodule:: intel_extension_for_pytorch
88
.. autofunction:: optimize
9+
.. autofunction:: optimize_transformers
910
.. autofunction:: get_fp32_math_mode
1011
.. autofunction:: set_fp32_math_mode
1112
.. autoclass:: verbose
@@ -39,6 +40,8 @@ Miscellaneous
3940
.. set_stream
4041
.. autofunction:: stream
4142
.. autofunction:: synchronize
43+
.. autofunction:: quantization._gptq
44+
.. autofunction:: fp8_autocast
4245

4346
Random Number Generator
4447
=======================

docs/tutorials/features.rst

Lines changed: 7 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -43,21 +43,25 @@ Detailed information of AMP for GPU and CPU are available at `Auto Mixed Precisi
4343
features/amp_gpu
4444

4545

46-
INT8 Quantization
47-
-----------------
46+
Quantization
47+
------------
4848

49-
Intel® Extension for PyTorch* provides built-in quantization recipes to deliver good statistical accuracy for most popular DL workloads including CNN, NLP and recommendation models on CPU side. On top of that, if users would like to tune for a higher accuracy than what the default recipe provides, a recipe tuning API powered by Intel® Neural Compressor is provided for users to try.
49+
Intel® Extension for PyTorch* provides built-in INT8 quantization recipes to deliver good statistical accuracy for most popular DL workloads including CNN, NLP and recommendation models on CPU side. On top of that, if users would like to tune for a higher accuracy than what the default recipe provides, a recipe tuning API powered by Intel® Neural Compressor is provided for users to try.
5050

5151
Check more detailed information for `INT8 Quantization [CPU] <features/int8_overview.md>`_ and `INT8 recipe tuning API guide (Experimental, *NEW feature in 1.13.0* on CPU) <features/int8_recipe_tuning_api.md>`_ on CPU side.
5252

5353
On Intel® GPUs, quantization usages follow PyTorch default quantization APIs. Check sample codes at `Examples <./examples.html#int8>`_ page.
5454

55+
Intel® Extension for PyTorch* also provides INT4 and FP8 Quantization. Check more detailed information for `FP8 Quantization <./features/float8.md>`_ and `INT4 Quantization <./features/int4.md>`_
56+
5557
.. toctree::
5658
:hidden:
5759
:maxdepth: 1
5860

5961
features/int8_overview
6062
features/int8_recipe_tuning_api
63+
features/int4
64+
features/float8
6165

6266

6367
Distributed Training

docs/tutorials/features/hypertune.md

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -95,15 +95,15 @@ This is the script as an optimization function.
9595
'target_val' # optional. Target value of the objective function. Default is -float('inf')
9696
```
9797

98-
Have a look at the [example script](https://github.com/intel/intel-extension-for-pytorch/tree/v2.0.100+cpu/intel_extension_for_pytorch/cpu/hypertune/example/resnet50.py).
98+
Have a look at the [example script](https://github.com/intel/intel-extension-for-pytorch/tree/v2.1.0+cpu/intel_extension_for_pytorch/cpu/hypertune/example/resnet50.py).
9999

100100
## Usage Examples
101101

102102
**Tuning `ncores_per_instance` for minimum `latency`**
103103

104104
Suppose we want to tune `ncores_per_instance` for a single instance to minimize latency for resnet50 on a machine with two Intel(R) Xeon(R) Platinum 8180M CPUs. Each socket has 28 physical cores and another 28 logical cores.
105105

106-
Run the following command with [example.yaml](https://github.com/intel/intel-extension-for-pytorch/tree/v2.0.100+cpu/intel_extension_for_pytorch/cpu/hypertune/example/example.yaml) and [resnet50.py](https://github.com/intel/intel-extension-for-pytorch/tree/v2.0.100+cpu/intel_extension_for_pytorch/cpu/hypertune/example/resnet50.py):
106+
Run the following command with [example.yaml](https://github.com/intel/intel-extension-for-pytorch/tree/v2.1.0+cpu/intel_extension_for_pytorch/cpu/hypertune/example/example.yaml) and [resnet50.py](https://github.com/intel/intel-extension-for-pytorch/tree/v2.1.0+cpu/intel_extension_for_pytorch/cpu/hypertune/example/resnet50.py):
107107
```
108108
python -m intel_extension_for_pytorch.cpu.hypertune --conf_file <hypertune_directory>/example/example.yaml <hypertune_directory>/example/resnet50.py
109109
```
@@ -115,6 +115,6 @@ latency: 12.339081764221191
115115
```
116116
15 `ncores_per_instance` gave the minimum latency.
117117

118-
You will also find the tuning history in `<output_dir>/record.csv`. You can take [a sample csv file](https://github.com/intel/intel-extension-for-pytorch/tree/v2.0.100+cpu/intel_extension_for_pytorch/cpu/hypertune/example/record.csv) as a reference.
118+
You will also find the tuning history in `<output_dir>/record.csv`. You can take [a sample csv file](https://github.com/intel/intel-extension-for-pytorch/tree/v2.1.0+cpu/intel_extension_for_pytorch/cpu/hypertune/example/record.csv) as a reference.
119119

120120
Hypertune can also optimize multi-objective function. Add as many objectives as you would like to your script.

docs/tutorials/installation.rst

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,6 @@
11
Installation
22
============
33

4-
Select your preferences and follow the installation instructions provided on the `Installation page <../../../index.html#installation?platform=gpu&version=v2.1.0%2Bxpu>`_.
4+
Select your preferences and follow the installation instructions provided on the `Installation page <../../../index.html#installation?platform=gpu&version=v2.1.10%2Bxpu>`_.
55

66
After successful installation, refer to the `Quick Start <getting_started.md>`_ and `Examples <examples.md>`_ sections to start using the extension in your code.

0 commit comments

Comments
 (0)