|
| 1 | +import numpy |
| 2 | +import pytest |
| 3 | +import torch |
| 4 | +from collections import namedtuple |
| 5 | +from triton._C.libtriton import native_specialize_impl |
| 6 | +from triton.runtime.jit import MockTensor, JITCallable |
| 7 | +from triton._utils import canonicalize_dtype |
| 8 | +from triton.backends.nvidia.compiler import CUDABackend |
| 9 | +from triton.backends.amd.compiler import HIPBackend |
| 10 | +from triton.language import constexpr |
| 11 | +from triton.tools.tensor_descriptor import TensorDescriptor |
| 12 | +from triton.experimental.gluon.nvidia.hopper import TensorDescriptor as GluonTensorDescriptor |
| 13 | +from triton.experimental.gluon.language._layouts import NVMMASharedLayout |
| 14 | + |
| 15 | + |
| 16 | +def mock_tensor_from_tensor(tensor): |
| 17 | + return MockTensor(tensor.dtype, tensor.shape) |
| 18 | + |
| 19 | + |
| 20 | +class MockJITCallable(JITCallable): |
| 21 | + |
| 22 | + def __init__(self): |
| 23 | + pass |
| 24 | + |
| 25 | + def cache_key(self): |
| 26 | + return "mock_jit_callable" |
| 27 | + |
| 28 | + |
| 29 | +class MockFloat(float): |
| 30 | + |
| 31 | + def __new__(cls, value): |
| 32 | + return super().__new__(cls, value) |
| 33 | + |
| 34 | + |
| 35 | +class MockInt(int): |
| 36 | + |
| 37 | + def __new__(cls, value): |
| 38 | + return super().__new__(cls, value) |
| 39 | + |
| 40 | + |
| 41 | +def reference_specialize_impl(backend, arg, is_const, specialize_value, align): |
| 42 | + if arg is None: |
| 43 | + return ("constexpr", None) |
| 44 | + elif isinstance(arg, bool): |
| 45 | + return ("u1", None) |
| 46 | + elif isinstance(arg, int): |
| 47 | + key = backend.get_int_specialization(arg, align=align) if specialize_value else None |
| 48 | + if arg == 1 and specialize_value: |
| 49 | + return ("constexpr", 1) |
| 50 | + elif -(2**31) <= arg and arg <= 2**31 - 1: |
| 51 | + return ("i32", key) |
| 52 | + elif 2**63 <= arg and arg <= 2**64 - 1: |
| 53 | + return ("u64", key) |
| 54 | + else: |
| 55 | + return ("i64", key) |
| 56 | + elif isinstance(arg, float): |
| 57 | + return ("fp32", None) |
| 58 | + elif hasattr(arg, "data_ptr"): |
| 59 | + dsk = (arg.dtype, is_const) |
| 60 | + res = ("*k" if dsk[1] else "*") + canonicalize_dtype(dsk[0]) |
| 61 | + key = backend.get_tensor_specialization(arg, align=align) if specialize_value else None |
| 62 | + return (res, key) |
| 63 | + elif isinstance(arg, JITCallable): |
| 64 | + return ("constexpr", arg.cache_key) |
| 65 | + elif isinstance(arg, constexpr): |
| 66 | + return ("constexpr", arg) |
| 67 | + elif isinstance(arg, tuple): |
| 68 | + spec = [reference_specialize_impl(backend, x, False, True, True) for x in arg] |
| 69 | + make_tuple = lambda vals: type(arg)(*vals) if hasattr(arg, "_fields") else tuple(vals) |
| 70 | + tys = make_tuple([x[0] for x in spec]) |
| 71 | + keys = make_tuple([x[1] for x in spec]) |
| 72 | + return (tys, keys) |
| 73 | + elif isinstance(arg, TensorDescriptor): |
| 74 | + assert hasattr(arg.base, "data_ptr") |
| 75 | + inner = canonicalize_dtype(arg.base.dtype) |
| 76 | + return (f"tensordesc<{inner}{list(arg.block_shape)}>", None) |
| 77 | + elif isinstance(arg, GluonTensorDescriptor): |
| 78 | + assert hasattr(arg.base, "data_ptr") |
| 79 | + inner = canonicalize_dtype(arg.base.dtype) |
| 80 | + return (f"tensordesc<{inner}{list(arg.block_shape)},{arg.layout!r}>", None) |
| 81 | + else: |
| 82 | + raise TypeError("Unsupported type: %s" % type(arg)) |
| 83 | + |
| 84 | + |
| 85 | +def native_inputs_to_specialize(): |
| 86 | + return [ |
| 87 | + 1.0, |
| 88 | + None, |
| 89 | + False, |
| 90 | + True, |
| 91 | + 1, |
| 92 | + 0, |
| 93 | + -1, |
| 94 | + 16, |
| 95 | + 17, |
| 96 | + 2**31 - 1, |
| 97 | + 2**31, |
| 98 | + -2 * 31 - 1, |
| 99 | + 2**63 - 1, |
| 100 | + 2**63, |
| 101 | + 2**63 + 1, |
| 102 | + 2**64 - 1, |
| 103 | + ] |
| 104 | + |
| 105 | + |
| 106 | +def derived_inputs_to_specialize(): |
| 107 | + return [ |
| 108 | + constexpr(1), |
| 109 | + constexpr(False), |
| 110 | + constexpr(1.0), |
| 111 | + numpy.float64(1.0), |
| 112 | + MockFloat(1.0), |
| 113 | + MockInt(1), |
| 114 | + MockJITCallable(), |
| 115 | + ] |
| 116 | + |
| 117 | + |
| 118 | +def tuples_to_specialize(): |
| 119 | + return [ |
| 120 | + (1, 1), |
| 121 | + (False, True), |
| 122 | + namedtuple('strides', ['x', 'y'])(1, 1), |
| 123 | + namedtuple('flags', ['x', 'y'])(False, True), |
| 124 | + ] |
| 125 | + |
| 126 | + |
| 127 | +def tensors_to_specialize(): |
| 128 | + return [ |
| 129 | + torch.empty(shape, dtype=dtype, device="cpu") |
| 130 | + for shape in [(1, ), (1, 1), (16, ), (16, 16), (128, ), (128, 128)] |
| 131 | + for dtype in [torch.float64, torch.float32, torch.float16, torch.bfloat16, torch.int32, torch.int64] |
| 132 | + ] |
| 133 | + |
| 134 | + |
| 135 | +def tensordescriptors_to_specialize(): |
| 136 | + return [ |
| 137 | + TensorDescriptor.from_tensor(tensor, block_shape=tensor.shape) |
| 138 | + for tensor in tensors_to_specialize() |
| 139 | + if tensor.shape[-1] % 16 == 0 |
| 140 | + ] |
| 141 | + |
| 142 | + |
| 143 | +def gluon_tensordescriptors_to_specialize(): |
| 144 | + return [ |
| 145 | + GluonTensorDescriptor.from_tensor( |
| 146 | + tensor, |
| 147 | + block_shape=tensor.shape, |
| 148 | + layout=NVMMASharedLayout(0, tensor.dtype.itemsize * 8, len(tensor.shape)), |
| 149 | + ) for tensor in tensors_to_specialize() if tensor.shape[-1] % 16 == 0 |
| 150 | + ] |
| 151 | + |
| 152 | + |
| 153 | +def mock_tensors_to_specialize(): |
| 154 | + return [mock_tensor_from_tensor(tensor) for tensor in tensors_to_specialize()] |
| 155 | + |
| 156 | + |
| 157 | +@pytest.mark.parametrize("input_generator", [ |
| 158 | + native_inputs_to_specialize, |
| 159 | + tuples_to_specialize, |
| 160 | + tensors_to_specialize, |
| 161 | + tensordescriptors_to_specialize, |
| 162 | + gluon_tensordescriptors_to_specialize, |
| 163 | + mock_tensors_to_specialize, |
| 164 | +]) |
| 165 | +@pytest.mark.parametrize("backend", [CUDABackend, HIPBackend]) |
| 166 | +@pytest.mark.parametrize("is_const", [True, False]) |
| 167 | +@pytest.mark.parametrize("specialize_value", [True, False]) |
| 168 | +@pytest.mark.parametrize("align", [True, False]) |
| 169 | +def test_specialize_impl(input_generator, backend, is_const, specialize_value, align): |
| 170 | + for arg in input_generator(): |
| 171 | + result = native_specialize_impl(backend, arg, is_const, specialize_value, align) |
| 172 | + expected = reference_specialize_impl(backend, arg, is_const, specialize_value, align) |
| 173 | + assert result == expected |
0 commit comments