Model | -Domain | -Method | -Examples | -
---|---|---|---|
gpt_j | -Natural Language Processing | -Weight-Only Quantization | -link | -
Static Quantization (IPEX) | -link | -||
llama2_7b | -Natural Language Processing | -Weight-Only Quantization | -link | -
Static Quantization (IPEX) | -link | -||
opt_125m | -Natural Language Processing | -Static Quantization (IPEX) | -link | -
Static Quantization (PT2E) | -link | -||
Weight-Only Quantization | -link | -||
resnet18 | -Image Recognition | -Mixed Precision | -link | -
Static Quantization | -link | -
Model | -Domain | -Method | -Examples | -
---|---|---|---|
bert_large_squad_model_zoo | -Natural Language Processing | -Post-Training Static Quantization | -link | -
transformer_lt | -Natural Language Processing | -Post-Training Static Quantization | -link | -
inception_v3 | -Image Recognition | -Post-Training Static Quantization | -link | -
mobilenetv2 | -Image Recognition | -Post-Training Static Quantization | -link | -
resnetv2_50 | -Image Recognition | -Post-Training Static Quantization | -link | -
vgg16 | -Image Recognition | -Post-Training Static Quantization | -link | -
ViT | -Image Recognition | -Post-Training Static Quantization | -link | -
GraphSage | -Graph Networks | -Post-Training Static Quantization | -link | -
yolo_v5 | -Object Detection | -Post-Training Static Quantization | -link | -
faster_rcnn_resnet50 | -Object Detection | -Post-Training Static Quantization | -link | -
mask_rcnn_inception_v2 | -Object Detection | -Post-Training Static Quantization | -link | -
ssd_mobilenet_v1 | -Object Detection | -Post-Training Static Quantization | -link | -
wide_deep_large_ds | -Recommendation | -Post-Training Static Quantization | -link | -
3dunet-mlperf | -Semantic Image Segmentation | -Post-Training Static Quantization | -link | -
Model | -Domain | -Approach | -Examples | -
---|---|---|---|
ResNet50 V1.0 | -Image Recognition | -Post-Training Static Quantization | -pb | -
ResNet50 V1.5 | -Image Recognition | -Post-Training Static Quantization | -pb / keras | -
ResNet101 | -Image Recognition | -Post-Training Static Quantization | -pb / keras | -
MobileNet V1 | -Image Recognition | -Post-Training Static Quantization | -pb | -
MobileNet V2 | -Image Recognition | -Post-Training Static Quantization | -pb / keras | -
MobileNet V3 | -Image Recognition | -Post-Training Static Quantization | -pb | -
Inception V1 | -Image Recognition | -Post-Training Static Quantization | -pb | -
Inception V2 | -Image Recognition | -Post-Training Static Quantization | -pb | -
Inception V3 | -Image Recognition | -Post-Training Static Quantization | -pb / keras | -
Inception V4 | -Image Recognition | -Post-Training Static Quantization | -pb | -
Inception ResNet V2 | -Image Recognition | -Post-Training Static Quantization | -pb / keras | -
VGG16 | -Image Recognition | -Post-Training Static Quantization | -pb / keras | -
VGG19 | -Image Recognition | -Post-Training Static Quantization | -pb / keras | -
ResNet V2 50 | -Image Recognition | -Post-Training Static Quantization | -pb / keras | -
ResNet V2 101 | -Image Recognition | -Post-Training Static Quantization | -pb / keras | -
ResNet V2 152 | -Image Recognition | -Post-Training Static Quantization | -pb | -
DenseNet121 | -Image Recognition | -Post-Training Static Quantization | -pb | -
DenseNet161 | -Image Recognition | -Post-Training Static Quantization | -pb | -
DenseNet169 | -Image Recognition | -Post-Training Static Quantization | -pb | -
EfficientNet B0 | -Image Recognition | -Post-Training Static Quantization | -ckpt | -
Xception | -Image Recognition | -Post-Training Static Quantization | -keras | -
ResNet V2 | -Image Recognition | -Quantization-Aware Training | -keras | -
EfficientNet V2 B0 | -Image Recognition | -Post-Training Static Quantization | -SavedModel | -BERT base MRPC | -Natural Language Processing | -Post-Training Static Quantization | -ckpt | - -
BERT large SQuAD (Model Zoo) | -Natural Language Processing | -Post-Training Static Quantization | -pb | -
BERT large SQuAD | -Natural Language Processing | -Post-Training Static Quantization | -pb | -
DistilBERT base | -Natural Language Processing | -Post-Training Static Quantization | -pb | -
Transformer LT | -Natural Language Processing | -Post-Training Static Quantization | -pb | -
Transformer LT MLPerf | -Natural Language Processing | -Post-Training Static Quantization | -pb | -
SSD ResNet50 V1 | -Object Detection | -Post-Training Static Quantization | -pb / ckpt | -
SSD MobileNet V1 | -Object Detection | -Post-Training Static Quantization | -pb / ckpt | -
Faster R-CNN Inception ResNet V2 | -Object Detection | -Post-Training Static Quantization | -pb / SavedModel | -
Faster R-CNN ResNet101 | -Object Detection | -Post-Training Static Quantization | -pb / SavedModel | -
Faster R-CNN ResNet50 | -Object Detection | -Post-Training Static Quantization | -pb | -
Mask R-CNN Inception V2 | -Object Detection | -Post-Training Static Quantization | -pb / ckpt | -
SSD ResNet34 | -Object Detection | -Post-Training Static Quantization | -pb | -
YOLOv3 | -Object Detection | -Post-Training Static Quantization | -pb | -
Wide & Deep | -Recommendation | -Post-Training Static Quantization | -pb | -
Arbitrary Style Transfer | -Style Transfer | -Post-Training Static Quantization | -ckpt | -
OPT | -Natural Language Processing | -Post-Training Static Quantization | -pb (smooth quant) | -
GPT2 | -Natural Language Processing | -Post-Training Static Quantization | -pb (smooth quant) | -
ViT | -Image Recognition | -Post-Training Static Quantization | -pb | -
GraphSage | -Graph Networks | -Post-Training Static Quantization | -pb | -
EleutherAI/gpt-j-6B | -Natural Language Processing | -Post-Training Static Quantization | -saved_model (smooth quant) | -
Student Model | -Teacher Model | -Domain | -Approach | -Examples | -
---|---|---|---|---|
MobileNet | -DenseNet201 | -Image Recognition | -Knowledge Distillation | -pb | -
Model | -Domain | -Approach | -Examples | -
---|---|---|---|
ResNet V2 | -Image Recognition | -Structured (4x1, 2in4) | -keras | -
ViT | -Image Recognition | -Structured (4x1, 2in4) | -keras | -
Model | -Domain | -Approach | -Examples | -
---|---|---|---|
ResNet50 V1.5 | -Image Recognition | -TF2ONNX | -int8 fp32 | -
Model | -Domain | -Approach | -Examples | -
---|---|---|---|
ResNet18 | -Image Recognition | -Post-Training Static Quantization | -fx / ipex | -
ResNet18 | -Image Recognition | -Quantization-Aware Training | -fx | -
ResNet50 | -Image Recognition | -Post-Training Static Quantization | -fx / ipex | -
ResNet50 | -Image Recognition | -Quantization-Aware Training | -fx | -
ResNeXt101_32x16d_wsl | -Image Recognition | -Post-Training Static Quantization | -ipex | -
ResNeXt101_32x8d | -Image Recognition | -Post-Training Static Quantization | -fx | -
Se_ResNeXt50_32x4d | -Image Recognition | -Post-Training Static Quantization | -fx | -
Inception V3 | -Image Recognition | -Post-Training Static Quantization | -fx | -
MobileNet V2 | -Image Recognition | -Post-Training Static Quantization | -fx | -
PeleeNet | -Image Recognition | -Post-Training Static Quantization | -fx | -
ResNeSt50 | -Image Recognition | -Post-Training Static Quantization | -fx | -
3D-UNet | -Image Recognition | -Post-Training Static Quantization | -fx | -
SSD ResNet34 | -Object Detection | -Post-Training Static Quantization | -fx / ipex | -
YOLOv3 | -Object Detection | -Post-Training Static Quantization | -fx | -
Mask R-CNN | -Object Detection | -Post-Training Static Quantization | -fx | -
DLRM | -Recommendation | -Post-Training Static Quantization | -ipex / fx | -
HuBERT | -Speech Recognition | -Post-Training Static Quantization | -fx | -
HuBERT | -Speech Recognition | -Post-Training Dynamic Quantization | -fx | -
BlendCNN | -Natural Language Processing | -Post-Training Static Quantization | -ipex | -
bert-large-uncased-whole-word-masking-finetuned-squad | -Natural Language Processing | -Post-Training Static Quantization | -fx / ipex(Intel GPU) | -
distilbert-base-uncased-distilled-squad | -Natural Language Processing | -Post-Training Static Quantization | -ipex | -
yoshitomo-matsubara/bert-large-uncased-rte | -Natural Language Processing | -Post-Training Dynamic Quantization | -fx | -
Intel/xlm-roberta-base-mrpc | -Natural Language Processing | -Post-Training Dynamic Quantization | -fx | -
textattack/distilbert-base-uncased-MRPC | -Natural Language Processing | -Post-Training Dynamic Quantization | -fx | -
textattack/albert-base-v2-MRPC | -Natural Language Processing | -Post-Training Dynamic Quantization | -fx | -
Intel/xlm-roberta-base-mrpc | -Natural Language Processing | -Post-Training Static Quantization | -fx | -
yoshitomo-matsubara/bert-large-uncased-rte | -Natural Language Processing | -Post-Training Static Quantization | -fx | -
Intel/bert-base-uncased-mrpc | -Natural Language Processing | -Post-Training Static Quantization | -fx | -
textattack/bert-base-uncased-CoLA | -Natural Language Processing | -Post-Training Static Quantization | -fx | -
textattack/bert-base-uncased-STS-B | -Natural Language Processing | -Post-Training Static Quantization | -fx | -
gchhablani/bert-base-cased-finetuned-sst2 | -Natural Language Processing | -Post-Training Static Quantization | -fx | -
ModelTC/bert-base-uncased-rte | -Natural Language Processing | -Post-Training Static Quantization | -fx | -
textattack/bert-base-uncased-QNLI | -Natural Language Processing | -Post-Training Static Quantization | -fx | -
yoshitomo-matsubara/bert-large-uncased-cola | -Natural Language Processing | -Post-Training Static Quantization | -fx | -
textattack/distilbert-base-uncased-MRPC | -Natural Language Processing | -Post-Training Static Quantization | -fx | -
Intel/xlnet-base-cased-mrpc | -Natural Language Processing | -Post-Training Static Quantization | -fx | -
textattack/roberta-base-MRPC | -Natural Language Processing | -Post-Training Static Quantization | -fx | -
Intel/camembert-base-mrpc | -Natural Language Processing | -Post-Training Static Quantization | -fx | -
t5-small | -Natural Language Processing | -Post-Training Dynamic Quantization | -fx | -
Helsinki-NLP/opus-mt-en-ro | -Natural Language Processing | -Post-Training Dynamic Quantization | -fx | -
lvwerra/pegasus-samsum | -Natural Language Processing | -Post-Training Dynamic Quantization | -fx | -
google/reformer-crime-and-punishment | -Natural Language Processing | -Post-Training Static Quantization | -fx | -
EleutherAI/gpt-j-6B | -Natural Language Processing | -Post-Training Static Quantization | -fx / smooth quant | -
EleutherAI/gpt-j-6B | -Natural Language Processing | -Post-Training Weight Only Quantization | -weight_only | -
abeja/gpt-neox-japanese-2.7b | -Natural Language Processing | -Post-Training Static Quantization | -fx | -
bigscience/bloom | -Natural Language Processing | -Post-Training Static Quantization | -smooth quant | -
facebook/opt | -Natural Language Processing | -Post-Training Static Quantization | -smooth quant | -
SD Diffusion | -Text to Image | -Post-Training Static Quantization | -fx | -
openai/whisper-large | -Speech Recognition | -Post-Training Dynamic Quantization | -fx | -
torchaudio/wav2vec2 | -Speech Recognition | -Post-Training Dynamic Quantization | -fx | -
Model | -Domain | -Approach | -Examples | -
---|---|---|---|
T5 Large | -Natural Language Processing | -Post-Training Dynamic Quantization | -fx | -
Flan T5 Large | -Natural Language Processing | -Post-Training Dynamic / Static Quantization | -fx | -
Model | -Domain | -Pruning Type | -Approach | -Examples | -
---|---|---|---|---|
Distilbert-base-uncased | -Natural Language Processing (text classification) | -Structured (4x1, 2in4), Unstructured | -Snip-momentum | -eager | -
Bert-mini | -Natural Language Processing (text classification) | -Structured (4x1, 2in4, per channel), Unstructured | -Snip-momentum | -eager | -
Distilbert-base-uncased | -Natural Language Processing (question answering) | -Structured (4x1, 2in4), Unstructured | -Snip-momentum | -eager | -
Bert-mini | -Natural Language Processing (question answering) | -Structured (4x1, 2in4), Unstructured | -Snip-momentum | -eager | -
Bert-base-uncased | -Natural Language Processing (question answering) | -Structured (4x1, 2in4), Unstructured | -Snip-momentum | -eager | -
Bert-large | -Natural Language Processing (question answering) | -Structured (4x1, 2in4), Unstructured | -Snip-momentum | -eager | -
Flan-T5-small | -Natural Language Processing (translation) | -Structured (4x1) | -Snip-momentum | -eager | -
YOLOv5s6 | -Object Detection | -Structured (4x1, 2in4), Unstructured | -Snip-momentum | -eager | -
ResNet50 | -Image Recognition | -Structured (2x1) | -Snip-momentum | -eager | -
Bert-base | -Question Answering | -Structured (channel, multi-head attention) | -Snip-momentum | -eager | -
Bert-large | -Question Answering | -Structured (channel, multi-head attention) | -Snip-momentum | -eager | -
Student Model | -Teacher Model | -Domain | -Approach | -Examples | -
---|---|---|---|---|
CNN-2 | -CNN-10 | -Image Recognition | -Knowledge Distillation | -eager | -
MobileNet V2-0.35 | -WideResNet40-2 | -Image Recognition | -Knowledge Distillation | -eager | -
ResNet18|ResNet34|ResNet50|ResNet101 | -ResNet18|ResNet34|ResNet50|ResNet101 | -Image Recognition | -Knowledge Distillation | -eager | -
ResNet18|ResNet34|ResNet50|ResNet101 | -ResNet18|ResNet34|ResNet50|ResNet101 | -Image Recognition | -Self Distillation | -eager | -
VGG-8 | -VGG-13 | -Image Recognition | -Knowledge Distillation | -eager | -
BlendCNN | -BERT-Base | -Natural Language Processing | -Knowledge Distillation | -eager | -
DistilBERT | -BERT-Base | -Natural Language Processing | -Knowledge Distillation | -eager | -
BiLSTM | -RoBERTa-Base | -Natural Language Processing | -Knowledge Distillation | -eager | -
TinyBERT | -BERT-Base | -Natural Language Processing | -Knowledge Distillation | -eager | -
BERT-3 | -BERT-Base | -Natural Language Processing | -Knowledge Distillation | -eager | -
DistilRoBERTa | -RoBERTa-Large | -Natural Language Processing | -Knowledge Distillation | -eager | -
Model | Domain | -Approach | +Method | Examples |
---|---|---|---|---|
ResNet50 | -Image Recognition | -Multi-shot: Pruning and PTQ |
- link | -|
ResNet50 | -Image Recognition | -One-shot: QAT during Pruning |
- link | -|
Intel/bert-base-uncased-sparse-90-unstructured-pruneofa | -Natural Language Processing (question-answering) | -One-shot: Pruning, Distillation and QAT |
- link | -|
Intel/bert-base-uncased-sparse-90-unstructured-pruneofa | -Natural Language Processing (text-classification) | -One-shot: Pruning, Distillation and QAT |
- link | -
Model | -Domain | -Approach | -Examples | -
---|---|---|---|
ResNet18 | -Image Recognition | -PT2ONNX | -int8 fp32 | -
ResNet50 | -Image Recognition | -PT2ONNX | -int8 fp32 | -
bert base MRPC | -Natural Language Processing | -PT2ONNX | -int8 fp32 | -
bert large MRPC | -Natural Language Processing | -PT2ONNX | -int8 fp32 | -
gpt_j | +Natural Language Processing | +Weight-Only Quantization | +link | +
Static Quantization (IPEX) | +link | +||
llama2_7b | +Natural Language Processing | +Weight-Only Quantization | +link | +
Static Quantization (IPEX) | +link | +||
opt_125m | +Natural Language Processing | +Static Quantization (IPEX) | +link | +
Static Quantization (PT2E) | +link | +||
Weight-Only Quantization | +link | +||
resnet18 | +Image Recognition | +Mixed Precision | +link | +
Static Quantization | +link | +
Model | Domain | -Approach | +Method | Examples |
---|---|---|---|---|
ResNet50 V1.5 | -Image Recognition | -Post-Training Static Quantization | -qlinearops / qdq | -|
ResNet50 V1.5 MLPerf | -Image Recognition | -Post-Training Static Quantization | -qlinearops / qdq | -|
VGG16 | -Image Recognition | -Post-Training Static Quantization | -qlinearops / qdq | -|
MobileNet V2 | -Image Recognition | -Post-Training Static Quantization | -qlinearops / qdq | -|
MobileNet V3 MLPerf | -Image Recognition | -Post-Training Static Quantization | -qlinearops / qdq | -|
AlexNet (ONNX Model Zoo) | -Image Recognition | -Post-Training Static Quantization | -qlinearops / qdq | -|
CaffeNet (ONNX Model Zoo) | -Image Recognition | -Post-Training Static Quantization | -qlinearops / qdq | -|
DenseNet (ONNX Model Zoo) | -Image Recognition | -Post-Training Static Quantization | -qlinearops | -|
EfficientNet (ONNX Model Zoo) | -Image Recognition | -Post-Training Static Quantization | -qlinearops / qdq | -|
FCN (ONNX Model Zoo) | -Image Recognition | -Post-Training Static Quantization | -qlinearops / qdq | -|
GoogleNet (ONNX Model Zoo) | -Image Recognition | -Post-Training Static Quantization | -qlinearops / qdq | -|
Inception V1 (ONNX Model Zoo) | -Image Recognition | -Post-Training Static Quantization | -qlinearops / qdq | -|
MNIST (ONNX Model Zoo) | -Image Recognition | -Post-Training Static Quantization | -qlinearops | -|
MobileNet V2 (ONNX Model Zoo) | -Image Recognition | -Post-Training Static Quantization | -qlinearops / qdq | -|
ResNet50 V1.5 (ONNX Model Zoo) | -Image Recognition | +|||
bert_large_squad_model_zoo | +Natural Language Processing | Post-Training Static Quantization | -qlinearops / qdq | -|
ShuffleNet V2 (ONNX Model Zoo) | -Image Recognition | +link | +||
transformer_lt | +Natural Language Processing | Post-Training Static Quantization | -qlinearops / qdq | -|
SqueezeNet (ONNX Model Zoo) | +link | +|||
inception_v3 | Image Recognition | Post-Training Static Quantization | -qlinearops / qdq | -|
VGG16 (ONNX Model Zoo) | +link | +|||
mobilenetv2 | Image Recognition | Post-Training Static Quantization | -qlinearops / qdq | -|
ZFNet (ONNX Model Zoo) | +link | +|||
resnetv2_50 | Image Recognition | Post-Training Static Quantization | -qlinearops / qdq | -|
ArcFace (ONNX Model Zoo) | +link | +|||
vgg16 | Image Recognition | Post-Training Static Quantization | -qlinearops | -|
BEiT | +link | +|||
ViT | Image Recognition | Post-Training Static Quantization | -qlinearops | -|
BERT base MRPC | -Natural Language Processing | -Post-Training Static Quantization | -integerops / qdq | -|
BERT base MRPC | -Natural Language Processing | -Post-Training Dynamic Quantization | -integerops | -|
DistilBERT base MRPC | -Natural Language Processing | -Post-Training Dynamic / Static Quantization | -integerops / qdq | -|
Mobile bert MRPC | -Natural Language Processing | -Post-Training Dynamic / Static Quantization | -integerops / qdq | -|
Roberta base MRPC | -Natural Language Processing | -Post-Training Dynamic / Static Quantization | -integerops / qdq | -|
BERT SQuAD (ONNX Model Zoo) | -Natural Language Processing | -Post-Training Dynamic Quantization | -integerops | -|
GPT2 lm head WikiText (ONNX Model Zoo) | -Natural Language Processing | -Post-Training Dynamic Quantization | -integerops | -|
MobileBERT SQuAD MLPerf (ONNX Model Zoo) | -Natural Language Processing | -Post-Training Dynamic / Static Quantization | -integerops / qdq | -|
BiDAF (ONNX Model Zoo) | -Natural Language Processing | -Post-Training Dynamic Quantization | -integerops | -|
Spanbert SQuAD (HuggingFace) | -Natural Language Processing | -Post-Training Dynamic / Static Quantization | -- integerops / qlinearops - | -|
Bert base multilingual cased SQuAD (HuggingFace) | -Natural Language Processing | -Post-Training Dynamic / Static Quantization | -- integerops / qlinearops - | -|
DistilBert base uncased SQuAD (HuggingFace) | -Natural Language Processing | -Post-Training Dynamic / Static Quantization | -- integerops / qlinearops - | -|
BERT large uncased whole word masking SQuAD (HuggingFace) | -Natural Language Processing | -Post-Training Dynamic / Static Quantization | -- integerops / qlinearops - | -|
Roberta large SQuAD v2 (HuggingFace) | -Natural Language Processing | -Post-Training Dynamic / Static Quantization | -- integerops / qlinearops - | -|
GPT2 WikiText (HuggingFace) | -Natural Language Processing | -Post-Training Dynamic / Static Quantization | -- integerops / qlinearops - | -|
DistilGPT2 WikiText (HuggingFace) | -Natural Language Processing | -Post-Training Dynamic / Static Quantization | -- integerops / qlinearops - | -|
LayoutLMv3 FUNSD (HuggingFace) | -Natural Language Processing | -Post-Training Dynamic / Static Quantization | -- integerops / qlinearops - | -|
LayoutLMv2 FUNSD (HuggingFace) | -Natural Language Processing | -Post-Training Dynamic / Static Quantization | -- integerops / qlinearops - | -|
LayoutLM FUNSD (HuggingFace) | -Natural Language Processing | -Post-Training Dynamic / Static Quantization | -- integerops / qlinearops - | -|
SSD MobileNet V1 | -Object Detection | -Post-Training Static Quantization | -qlinearops / qdq | -|
SSD MobileNet V2 | -Object Detection | -Post-Training Static Quantization | -qlinearops / qdq | -|
Table Transformer Structure Recognition | -Object Detection | -Post-Training Static Quantization | -qlinearops | -|
Table Transformer Detection | -Object Detection | -Post-Training Static Quantization | -qlinearops | -|
SSD MobileNet V1 (ONNX Model Zoo) | -Object Detection | -Post-Training Static Quantization | -qlinearops / qdq | -|
DUC (ONNX Model Zoo) | -Object Detection | -Post-Training Static Quantization | -qlinearops | -|
Faster R-CNN (ONNX Model Zoo) | -Object Detection | -Post-Training Static Quantization | -qlinearops / qdq | -|
Mask R-CNN (ONNX Model Zoo) | -Object Detection | +link | +||
GraphSage | +Graph Networks | Post-Training Static Quantization | -qlinearops / qdq | -|
SSD (ONNX Model Zoo) | +link | +|||
yolo_v5 | Object Detection | Post-Training Static Quantization | -qlinearops / qdq | -|
Tiny YOLOv3 (ONNX Model Zoo) | +link | +|||
faster_rcnn_resnet50 | Object Detection | Post-Training Static Quantization | -qlinearops | -|
YOLOv3 (ONNX Model Zoo) | +link | +|||
mask_rcnn_inception_v2 | Object Detection | Post-Training Static Quantization | -qlinearops | -|
YOLOv4 (ONNX Model Zoo) | +link | +|||
ssd_mobilenet_v1 | Object Detection | Post-Training Static Quantization | -qlinearops | -|
Emotion FERPlus (ONNX Model Zoo) | -Body Analysis | +link | +||
wide_deep_large_ds | +Recommendation | Post-Training Static Quantization | -qlinearops | -|
Ultra Face (ONNX Model Zoo) | -Body Analysis | +link | +||
3dunet-mlperf | +Semantic Image Segmentation | Post-Training Static Quantization | -qlinearops | -|
GPT-J-6B (HuggingFace) | -Text Generation | -Post-Training Dynamic / Static Quantization | -- integerops / qlinearops - | -|
Llama-7B (HuggingFace) | -Text Generation | -Static / Weight Only Quantization | -- qlinearops / weight_only - | -link | + +
Model | +Domain | +Approach | +Examples | +
---|---|---|---|
ResNet50 V1.0 | +Image Recognition | +Post-Training Static Quantization | +pb | +
ResNet50 V1.5 | +Image Recognition | +Post-Training Static Quantization | +pb / keras | +
ResNet101 | +Image Recognition | +Post-Training Static Quantization | +pb / keras | +
MobileNet V1 | +Image Recognition | +Post-Training Static Quantization | +pb | +
MobileNet V2 | +Image Recognition | +Post-Training Static Quantization | +pb / keras | +
MobileNet V3 | +Image Recognition | +Post-Training Static Quantization | +pb | +
Inception V1 | +Image Recognition | +Post-Training Static Quantization | +pb | +
Inception V2 | +Image Recognition | +Post-Training Static Quantization | +pb | +
Inception V3 | +Image Recognition | +Post-Training Static Quantization | +pb / keras | +
Inception V4 | +Image Recognition | +Post-Training Static Quantization | +pb | +
Inception ResNet V2 | +Image Recognition | +Post-Training Static Quantization | +pb / keras | +
VGG16 | +Image Recognition | +Post-Training Static Quantization | +pb / keras | +
VGG19 | +Image Recognition | +Post-Training Static Quantization | +pb / keras | +
ResNet V2 50 | +Image Recognition | +Post-Training Static Quantization | +pb / keras | +
ResNet V2 101 | +Image Recognition | +Post-Training Static Quantization | +pb / keras | +
ResNet V2 152 | +Image Recognition | +Post-Training Static Quantization | +pb | +
DenseNet121 | +Image Recognition | +Post-Training Static Quantization | +pb | +
DenseNet161 | +Image Recognition | +Post-Training Static Quantization | +pb | +
DenseNet169 | +Image Recognition | +Post-Training Static Quantization | +pb | +
EfficientNet B0 | +Image Recognition | +Post-Training Static Quantization | +ckpt | +
Xception | +Image Recognition | +Post-Training Static Quantization | +keras | +
ResNet V2 | +Image Recognition | +Quantization-Aware Training | +keras | +
EfficientNet V2 B0 | +Image Recognition | +Post-Training Static Quantization | +SavedModel | +
BERT base MRPC | +Natural Language Processing | +Post-Training Static Quantization | +ckpt | +
BERT large SQuAD (Model Zoo) | +Natural Language Processing | +Post-Training Static Quantization | +pb | +
BERT large SQuAD | +Natural Language Processing | +Post-Training Static Quantization | +pb | +
DistilBERT base | +Natural Language Processing | +Post-Training Static Quantization | +pb | +
Transformer LT | +Natural Language Processing | +Post-Training Static Quantization | +pb | +
Transformer LT MLPerf | +Natural Language Processing | +Post-Training Static Quantization | +pb | +
SSD ResNet50 V1 | +Object Detection | +Post-Training Static Quantization | +pb / ckpt | +
SSD MobileNet V1 | +Object Detection | +Post-Training Static Quantization | +pb / ckpt | +
Faster R-CNN Inception ResNet V2 | +Object Detection | +Post-Training Static Quantization | +pb / SavedModel | +
Faster R-CNN ResNet101 | +Object Detection | +Post-Training Static Quantization | +pb / SavedModel | +
Faster R-CNN ResNet50 | +Object Detection | +Post-Training Static Quantization | +pb | +
Mask R-CNN Inception V2 | +Object Detection | +Post-Training Static Quantization | +pb / ckpt | +
SSD ResNet34 | +Object Detection | +Post-Training Static Quantization | +pb | +
YOLOv3 | +Object Detection | +Post-Training Static Quantization | +pb | +
Wide & Deep | +Recommendation | +Post-Training Static Quantization | +pb | +
Arbitrary Style Transfer | +Style Transfer | +Post-Training Static Quantization | +ckpt | +
OPT | +Natural Language Processing | +Post-Training Static Quantization | +pb (smooth quant) | +
GPT2 | +Natural Language Processing | +Post-Training Static Quantization | +pb (smooth quant) | +
ViT | +Image Recognition | +Post-Training Static Quantization | +pb | +
GraphSage | +Graph Networks | +Post-Training Static Quantization | +pb | +
EleutherAI/gpt-j-6B | +Natural Language Processing | +Post-Training Static Quantization | +saved_model (smooth quant) | +
Student Model | +Teacher Model | +Domain | +Approach | +Examples | +
---|---|---|---|---|
MobileNet | +DenseNet201 | +Image Recognition | +Knowledge Distillation | +pb | +
Model | +Domain | +Approach | +Examples | +
---|---|---|---|
ResNet V2 | +Image Recognition | +Structured (4x1, 2in4) | +keras | +
ViT | +Image Recognition | +Structured (4x1, 2in4) | +keras | +
Model | +Domain | +Approach | +Examples | +
---|---|---|---|
ResNet50 V1.5 | +Image Recognition | +TF2ONNX | +int8 fp32 | +
Model | +Domain | +Approach | +Examples | +
---|---|---|---|
ResNet18 | +Image Recognition | +Post-Training Static Quantization | +fx / ipex | +
ResNet18 | +Image Recognition | +Quantization-Aware Training | +fx | +
ResNet50 | +Image Recognition | +Post-Training Static Quantization | +fx / ipex | +
ResNet50 | +Image Recognition | +Quantization-Aware Training | +fx | +
ResNeXt101_32x16d_wsl | +Image Recognition | +Post-Training Static Quantization | +ipex | +
ResNeXt101_32x8d | +Image Recognition | +Post-Training Static Quantization | +fx | +
Se_ResNeXt50_32x4d | +Image Recognition | +Post-Training Static Quantization | +fx | +
Inception V3 | +Image Recognition | +Post-Training Static Quantization | +fx | +
MobileNet V2 | +Image Recognition | +Post-Training Static Quantization | +fx | +
PeleeNet | +Image Recognition | +Post-Training Static Quantization | +fx | +
ResNeSt50 | +Image Recognition | +Post-Training Static Quantization | +fx | +
3D-UNet | +Image Recognition | +Post-Training Static Quantization | +fx | +
SSD ResNet34 | +Object Detection | +Post-Training Static Quantization | +fx / ipex | +
YOLOv3 | +Object Detection | +Post-Training Static Quantization | +fx | +
Mask R-CNN | +Object Detection | +Post-Training Static Quantization | +fx | +
DLRM | +Recommendation | +Post-Training Static Quantization | +ipex / fx | +
HuBERT | +Speech Recognition | +Post-Training Static Quantization | +fx | +
HuBERT | +Speech Recognition | +Post-Training Dynamic Quantization | +fx | +
BlendCNN | +Natural Language Processing | +Post-Training Static Quantization | +ipex | +
bert-large-uncased-whole-word-masking-finetuned-squad | +Natural Language Processing | +Post-Training Static Quantization | +fx / ipex(Intel GPU) | +
distilbert-base-uncased-distilled-squad | +Natural Language Processing | +Post-Training Static Quantization | +ipex | +
yoshitomo-matsubara/bert-large-uncased-rte | +Natural Language Processing | +Post-Training Dynamic Quantization | +fx | +
Intel/xlm-roberta-base-mrpc | +Natural Language Processing | +Post-Training Dynamic Quantization | +fx | +
textattack/distilbert-base-uncased-MRPC | +Natural Language Processing | +Post-Training Dynamic Quantization | +fx | +
textattack/albert-base-v2-MRPC | +Natural Language Processing | +Post-Training Dynamic Quantization | +fx | +
Intel/xlm-roberta-base-mrpc | +Natural Language Processing | +Post-Training Static Quantization | +fx | +
yoshitomo-matsubara/bert-large-uncased-rte | +Natural Language Processing | +Post-Training Static Quantization | +fx | +
Intel/bert-base-uncased-mrpc | +Natural Language Processing | +Post-Training Static Quantization | +fx | +
textattack/bert-base-uncased-CoLA | +Natural Language Processing | +Post-Training Static Quantization | +fx | +
textattack/bert-base-uncased-STS-B | +Natural Language Processing | +Post-Training Static Quantization | +fx | +
gchhablani/bert-base-cased-finetuned-sst2 | +Natural Language Processing | +Post-Training Static Quantization | +fx | +
ModelTC/bert-base-uncased-rte | +Natural Language Processing | +Post-Training Static Quantization | +fx | +
textattack/bert-base-uncased-QNLI | +Natural Language Processing | +Post-Training Static Quantization | +fx | +
yoshitomo-matsubara/bert-large-uncased-cola | +Natural Language Processing | +Post-Training Static Quantization | +fx | +
textattack/distilbert-base-uncased-MRPC | +Natural Language Processing | +Post-Training Static Quantization | +fx | +
Intel/xlnet-base-cased-mrpc | +Natural Language Processing | +Post-Training Static Quantization | +fx | +
textattack/roberta-base-MRPC | +Natural Language Processing | +Post-Training Static Quantization | +fx | +
Intel/camembert-base-mrpc | +Natural Language Processing | +Post-Training Static Quantization | +fx | +
t5-small | +Natural Language Processing | +Post-Training Dynamic Quantization | +fx | +
Helsinki-NLP/opus-mt-en-ro | +Natural Language Processing | +Post-Training Dynamic Quantization | +fx | +
lvwerra/pegasus-samsum | +Natural Language Processing | +Post-Training Dynamic Quantization | +fx | +
google/reformer-crime-and-punishment | +Natural Language Processing | +Post-Training Static Quantization | +fx | +
EleutherAI/gpt-j-6B | +Natural Language Processing | +Post-Training Static Quantization | +fx / smooth quant | +
EleutherAI/gpt-j-6B | +Natural Language Processing | +Post-Training Weight Only Quantization | +weight_only | +
abeja/gpt-neox-japanese-2.7b | +Natural Language Processing | +Post-Training Static Quantization | +fx | +
bigscience/bloom | +Natural Language Processing | +Post-Training Static Quantization | +smooth quant | +
facebook/opt | +Natural Language Processing | +Post-Training Static Quantization | +smooth quant | +
SD Diffusion | +Text to Image | +Post-Training Static Quantization | +fx | +
openai/whisper-large | +Speech Recognition | +Post-Training Dynamic Quantization | +fx | +
torchaudio/wav2vec2 | +Speech Recognition | +Post-Training Dynamic Quantization | +fx | +
Model | +Domain | +Approach | +Examples | +
---|---|---|---|
T5 Large | +Natural Language Processing | +Post-Training Dynamic Quantization | +fx | +
Flan T5 Large | +Natural Language Processing | +Post-Training Dynamic / Static Quantization | +fx | +
Model | +Domain | +Pruning Type | +Approach | +Examples | +
---|---|---|---|---|
Distilbert-base-uncased | +Natural Language Processing (text classification) | +Structured (4x1, 2in4), Unstructured | +Snip-momentum | +eager | +
Bert-mini | +Natural Language Processing (text classification) | +Structured (4x1, 2in4, per channel), Unstructured | +Snip-momentum | +eager | +
Distilbert-base-uncased | +Natural Language Processing (question answering) | +Structured (4x1, 2in4), Unstructured | +Snip-momentum | +eager | +
Bert-mini | +Natural Language Processing (question answering) | +Structured (4x1, 2in4), Unstructured | +Snip-momentum | +eager | +
Bert-base-uncased | +Natural Language Processing (question answering) | +Structured (4x1, 2in4), Unstructured | +Snip-momentum | +eager | +
Bert-large | +Natural Language Processing (question answering) | +Structured (4x1, 2in4), Unstructured | +Snip-momentum | +eager | +
Flan-T5-small | +Natural Language Processing (translation) | +Structured (4x1) | +Snip-momentum | +eager | +
YOLOv5s6 | +Object Detection | +Structured (4x1, 2in4), Unstructured | +Snip-momentum | +eager | +
ResNet50 | +Image Recognition | +Structured (2x1) | +Snip-momentum | +eager | +
Bert-base | +Question Answering | +Structured (channel, multi-head attention) | +Snip-momentum | +eager | +
Bert-large | +Question Answering | +Structured (channel, multi-head attention) | +Snip-momentum | +eager | +
Student Model | +Teacher Model | +Domain | +Approach | +Examples | +
---|---|---|---|---|
CNN-2 | +CNN-10 | +Image Recognition | +Knowledge Distillation | +eager | +
MobileNet V2-0.35 | +WideResNet40-2 | +Image Recognition | +Knowledge Distillation | +eager | +
ResNet18|ResNet34|ResNet50|ResNet101 | +ResNet18|ResNet34|ResNet50|ResNet101 | +Image Recognition | +Knowledge Distillation | +eager | +
ResNet18|ResNet34|ResNet50|ResNet101 | +ResNet18|ResNet34|ResNet50|ResNet101 | +Image Recognition | +Self Distillation | +eager | +
VGG-8 | +VGG-13 | +Image Recognition | +Knowledge Distillation | +eager | +
BlendCNN | +BERT-Base | +Natural Language Processing | +Knowledge Distillation | +eager | +
DistilBERT | +BERT-Base | +Natural Language Processing | +Knowledge Distillation | +eager | +
BiLSTM | +RoBERTa-Base | +Natural Language Processing | +Knowledge Distillation | +eager | +
TinyBERT | +BERT-Base | +Natural Language Processing | +Knowledge Distillation | +eager | +
BERT-3 | +BERT-Base | +Natural Language Processing | +Knowledge Distillation | +eager | +
DistilRoBERTa | +RoBERTa-Large | +Natural Language Processing | +Knowledge Distillation | +eager | +
Model | +Domain | +Approach | +Examples | +
---|---|---|---|
ResNet50 | +Image Recognition | +Multi-shot: Pruning and PTQ |
+ link | +
ResNet50 | +Image Recognition | +One-shot: QAT during Pruning |
+ link | +
Intel/bert-base-uncased-sparse-90-unstructured-pruneofa | +Natural Language Processing (question-answering) | +One-shot: Pruning, Distillation and QAT |
+ link | +
Intel/bert-base-uncased-sparse-90-unstructured-pruneofa | +Natural Language Processing (text-classification) | +One-shot: Pruning, Distillation and QAT |
+ link | +
Model | +Domain | +Approach | +Examples | +
---|---|---|---|
ResNet18 | +Image Recognition | +PT2ONNX | +int8 fp32 | +
ResNet50 | +Image Recognition | +PT2ONNX | +int8 fp32 | +
bert base MRPC | +Natural Language Processing | +PT2ONNX | +int8 fp32 | +
bert large MRPC | +Natural Language Processing | +PT2ONNX | +int8 fp32 | +
Model | +Domain | +Approach | +Examples | +
---|---|---|---|
ResNet50 V1.5 | +Image Recognition | +Post-Training Static Quantization | +qlinearops / qdq | +
ResNet50 V1.5 MLPerf | +Image Recognition | +Post-Training Static Quantization | +qlinearops / qdq | +
VGG16 | +Image Recognition | +Post-Training Static Quantization | +qlinearops / qdq | +
MobileNet V2 | +Image Recognition | +Post-Training Static Quantization | +qlinearops / qdq | +
MobileNet V3 MLPerf | +Image Recognition | +Post-Training Static Quantization | +qlinearops / qdq | +
AlexNet (ONNX Model Zoo) | +Image Recognition | +Post-Training Static Quantization | +qlinearops / qdq | +
CaffeNet (ONNX Model Zoo) | +Image Recognition | +Post-Training Static Quantization | +qlinearops / qdq | +
DenseNet (ONNX Model Zoo) | +Image Recognition | +Post-Training Static Quantization | +qlinearops | +
EfficientNet (ONNX Model Zoo) | +Image Recognition | +Post-Training Static Quantization | +qlinearops / qdq | +
FCN (ONNX Model Zoo) | +Image Recognition | +Post-Training Static Quantization | +qlinearops / qdq | +
GoogleNet (ONNX Model Zoo) | +Image Recognition | +Post-Training Static Quantization | +qlinearops / qdq | +
Inception V1 (ONNX Model Zoo) | +Image Recognition | +Post-Training Static Quantization | +qlinearops / qdq | +
MNIST (ONNX Model Zoo) | +Image Recognition | +Post-Training Static Quantization | +qlinearops | +
MobileNet V2 (ONNX Model Zoo) | +Image Recognition | +Post-Training Static Quantization | +qlinearops / qdq | +
ResNet50 V1.5 (ONNX Model Zoo) | +Image Recognition | +Post-Training Static Quantization | +qlinearops / qdq | +
ShuffleNet V2 (ONNX Model Zoo) | +Image Recognition | +Post-Training Static Quantization | +qlinearops / qdq | +
SqueezeNet (ONNX Model Zoo) | +Image Recognition | +Post-Training Static Quantization | +qlinearops / qdq | +
VGG16 (ONNX Model Zoo) | +Image Recognition | +Post-Training Static Quantization | +qlinearops / qdq | +
ZFNet (ONNX Model Zoo) | +Image Recognition | +Post-Training Static Quantization | +qlinearops / qdq | +
ArcFace (ONNX Model Zoo) | +Image Recognition | +Post-Training Static Quantization | +qlinearops | +
BEiT | +Image Recognition | +Post-Training Static Quantization | +qlinearops | +
BERT base MRPC | +Natural Language Processing | +Post-Training Static Quantization | +integerops / qdq | +
BERT base MRPC | +Natural Language Processing | +Post-Training Dynamic Quantization | +integerops | +
DistilBERT base MRPC | +Natural Language Processing | +Post-Training Dynamic / Static Quantization | +integerops / qdq | +
Mobile bert MRPC | +Natural Language Processing | +Post-Training Dynamic / Static Quantization | +integerops / qdq | +
Roberta base MRPC | +Natural Language Processing | +Post-Training Dynamic / Static Quantization | +integerops / qdq | +
BERT SQuAD (ONNX Model Zoo) | +Natural Language Processing | +Post-Training Dynamic Quantization | +integerops | +
GPT2 lm head WikiText (ONNX Model Zoo) | +Natural Language Processing | +Post-Training Dynamic Quantization | +integerops | +
MobileBERT SQuAD MLPerf (ONNX Model Zoo) | +Natural Language Processing | +Post-Training Dynamic / Static Quantization | +integerops / qdq | +
BiDAF (ONNX Model Zoo) | +Natural Language Processing | +Post-Training Dynamic Quantization | +integerops | +
Spanbert SQuAD (HuggingFace) | +Natural Language Processing | +Post-Training Dynamic / Static Quantization | ++ integerops / qlinearops + | +
Bert base multilingual cased SQuAD (HuggingFace) | +Natural Language Processing | +Post-Training Dynamic / Static Quantization | ++ integerops / qlinearops + | +
DistilBert base uncased SQuAD (HuggingFace) | +Natural Language Processing | +Post-Training Dynamic / Static Quantization | ++ integerops / qlinearops + | +
BERT large uncased whole word masking SQuAD (HuggingFace) | +Natural Language Processing | +Post-Training Dynamic / Static Quantization | ++ integerops / qlinearops + | +
Roberta large SQuAD v2 (HuggingFace) | +Natural Language Processing | +Post-Training Dynamic / Static Quantization | ++ integerops / qlinearops + | +
GPT2 WikiText (HuggingFace) | +Natural Language Processing | +Post-Training Dynamic / Static Quantization | ++ integerops / qlinearops + | +
DistilGPT2 WikiText (HuggingFace) | +Natural Language Processing | +Post-Training Dynamic / Static Quantization | ++ integerops / qlinearops + | +
LayoutLMv3 FUNSD (HuggingFace) | +Natural Language Processing | +Post-Training Dynamic / Static Quantization | ++ integerops / qlinearops + | +
LayoutLMv2 FUNSD (HuggingFace) | +Natural Language Processing | +Post-Training Dynamic / Static Quantization | ++ integerops / qlinearops + | +
LayoutLM FUNSD (HuggingFace) | +Natural Language Processing | +Post-Training Dynamic / Static Quantization | ++ integerops / qlinearops + | +
SSD MobileNet V1 | +Object Detection | +Post-Training Static Quantization | +qlinearops / qdq | +
SSD MobileNet V2 | +Object Detection | +Post-Training Static Quantization | +qlinearops / qdq | +
Table Transformer Structure Recognition | +Object Detection | +Post-Training Static Quantization | +qlinearops | +
Table Transformer Detection | +Object Detection | +Post-Training Static Quantization | +qlinearops | +
SSD MobileNet V1 (ONNX Model Zoo) | +Object Detection | +Post-Training Static Quantization | +qlinearops / qdq | +
DUC (ONNX Model Zoo) | +Object Detection | +Post-Training Static Quantization | +qlinearops | +
Faster R-CNN (ONNX Model Zoo) | +Object Detection | +Post-Training Static Quantization | +qlinearops / qdq | +
Mask R-CNN (ONNX Model Zoo) | +Object Detection | +Post-Training Static Quantization | +qlinearops / qdq | +
SSD (ONNX Model Zoo) | +Object Detection | +Post-Training Static Quantization | +qlinearops / qdq | +
Tiny YOLOv3 (ONNX Model Zoo) | +Object Detection | +Post-Training Static Quantization | +qlinearops | +
YOLOv3 (ONNX Model Zoo) | +Object Detection | +Post-Training Static Quantization | +qlinearops | +
YOLOv4 (ONNX Model Zoo) | +Object Detection | +Post-Training Static Quantization | +qlinearops | +
Emotion FERPlus (ONNX Model Zoo) | +Body Analysis | +Post-Training Static Quantization | +qlinearops | +
Ultra Face (ONNX Model Zoo) | +Body Analysis | +Post-Training Static Quantization | +qlinearops | +
GPT-J-6B (HuggingFace) | +Text Generation | +Post-Training Dynamic / Static Quantization | ++ integerops / qlinearops + | +
Llama-7B (HuggingFace) | +Text Generation | +Static / Weight Only Quantization | ++ qlinearops / weight_only + | +
-
-
-
+
+
+