@@ -163,27 +163,22 @@ def __init__(
163163 tokenizer = "openai/clip-vit-large-patch14" ,
164164 device = ["CPU" ,"CPU" ,"CPU" ],
165165 ):
166+
167+ super ().__init__ ()
168+
169+ self .set_progress_bar_config (disable = False )
166170
167171 try :
168172 self .tokenizer = CLIPTokenizer .from_pretrained (model ,local_files_only = True )
169173 except :
170174 self .tokenizer = CLIPTokenizer .from_pretrained (tokenizer )
171175 self .tokenizer .save_pretrained (model )
172176
173- # self.swap = swap
174- # models
175- #controlnet = ControlNetModel.from_pretrained("C:\\Users\\lab_admin\\openvino-ai-plugins-gimp\\weights\\stable-diffusion-ov\\controlnet-openpose\\models--lllyasviel--control_v11p_sd15_openpose", torch_dtype=torch.float32) #lllyasviel/control_v11p_sd15_openpose"
176- #pipe = StableDiffusionControlNetPipeline.from_pretrained(
177- # "runwayml/stable-diffusion-v1-5", controlnet=controlnet
178- #)
179-
180- #scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
181- #scheduler.save_config("C:\\Users\\lab_admin\\openvino-ai-plugins-gimp\\weights\\stable-diffusion-ov\\controlnet-openpose\\scheduler_config")
177+
182178
183179 self .scheduler = UniPCMultistepScheduler .from_pretrained (os .path .join (model ,".." ,"UniPCMultistepScheduler_config" ))
184180
185- #"C:\\Users\\lab_admin\\openvino-ai-plugins-gimp\\weights\\stable-diffusion-ov\\controlnet-openpose\\scheduler_config")
186- #del pipe
181+
187182
188183 self .core = Core ()
189184 self .core .set_property ({'CACHE_DIR' : os .path .join (model , 'cache' )}) #adding caching to reduce init time
@@ -193,25 +188,24 @@ def __init__(
193188 OPENPOSE_OV_PATH = os .path .join (model , "openpose.xml" )
194189 self .pose_estimator = OpenposeDetector .from_pretrained (os .path .join (model , "lllyasviel_ControlNet" ))
195190
196- #"C:\\Users\\lab_admin\\openvino-ai-plugins-gimp\\weights\\stable-diffusion-ov\\controlnet-openpose\\models--lllyasviel--ControlNet") #"lllyasviel/ControlNet")
191+
197192
198193 ov_openpose = OpenPoseOVModel (self .core , OPENPOSE_OV_PATH , device = "CPU" )
199194 self .pose_estimator .body_estimation .model = ov_openpose
200195
201196
202197
203198
204- #self.vae_scale_factor = 8
205- # self.scheduler = scheduler
199+
206200 controlnet = os .path .join (model , "controlnet-pose.xml" )
207201 text_encoder = os .path .join (model , "text_encoder.xml" )
208202 unet = os .path .join (model , "unet_controlnet.xml" )
209- #unet_neg = os.path.join(model, "unet_controlnet.xml")
203+
210204 vae_decoder = os .path .join (model , "vae_decoder.xml" )
211205
212206 ####################
213207 self .load_models (self .core , device , controlnet , text_encoder , unet , vae_decoder )
214- # self.set_progress_bar_config(disable=True)
208+
215209
216210 # encoder
217211 self .vae_encoder = None
@@ -221,17 +215,7 @@ def __init__(
221215 self .height = self .unet .input (0 ).shape [2 ] * 8
222216 self .width = self .unet .input (0 ).shape [3 ] * 8
223217
224- #if self.unet.input("sample").shape[1] == 4:
225- # self.height = self.unet.input("sample").shape[2] * 8
226- # self.width = self.unet.input("sample").shape[3] * 8
227- #else:
228-
229- # self.height = self.unet.input("sample").shape[1] * 8
230- # self.width = self.unet.input("sample").shape[2] * 8
231-
232- #self.infer_request_neg = self.unet_neg.create_infer_request()
233- #self.infer_request = self.unet.create_infer_request()
234-
218+
235219 def load_models (self , core : Core , device : str , controlnet :Model , text_encoder : Model , unet : Model , vae_decoder : Model ):
236220 """
237221 Function for loading models on device using OpenVINO
@@ -352,9 +336,7 @@ def __call__(
352336 latent_model_input = self .scheduler .scale_model_input (latent_model_input , t )
353337 #print("latent_model_input", latent_model_input)
354338
355- #print("TTTTTTTTTTTTTTTTTTTTTTTT :", t)
356- #print("text_embeddings:", text_embeddings)
357- #print("pose-------",pose)
339+
358340
359341 result = self .controlnet ([latent_model_input , t , text_embeddings , pose ])
360342 #print("result", result)
@@ -376,6 +358,10 @@ def __call__(
376358
377359 if create_gif :
378360 frames .append (latents )
361+
362+ # update progress
363+ if i == len (timesteps ) - 1 or ((i + 1 ) > num_warmup_steps and (i + 1 ) % self .scheduler .order == 0 ):
364+ progress_bar .update ()
379365
380366 if callback :
381367 callback (num_inference_steps , callback_userdata )
0 commit comments