|
197 | 197 | "metadata": {}, |
198 | 198 | "outputs": [], |
199 | 199 | "source": [ |
| 200 | + "import sklearn\n", |
200 | 201 | "from sklearn.compose import ColumnTransformer\n", |
201 | | - "\n", |
| 202 | + "from packaging import version\n", |
| 203 | + "# for older scikit-learn versions use sparse, for newer sparse_output:\n", |
| 204 | + "if version.parse(sklearn.__version__) < version.parse('1.2'):\n", |
| 205 | + " ohe_params = {\"sparse\": False}\n", |
| 206 | + "else:\n", |
| 207 | + " ohe_params = {\"sparse_output\": False}\n", |
202 | 208 | "transformations = ColumnTransformer([\n", |
203 | 209 | " (\"age_fare_1\", Pipeline(steps=[\n", |
204 | 210 | " ('imputer', SimpleImputer(strategy='median')),\n", |
|
208 | 214 | " (\"age_fare_3\", many_to_many_transformer, [\"age\", \"fare\"]),\n", |
209 | 215 | " (\"embarked\", Pipeline(steps=[\n", |
210 | 216 | " (\"imputer\", SimpleImputer(strategy='constant', fill_value='missing')), \n", |
211 | | - " (\"encoder\", OneHotEncoder(sparse=False))]), [\"embarked\"]),\n", |
212 | | - " (\"sex_pclass\", OneHotEncoder(sparse=False), [\"sex\", \"pclass\"]) \n", |
| 217 | + " (\"encoder\", OneHotEncoder(**ohe_params))]), [\"embarked\"]),\n", |
| 218 | + " (\"sex_pclass\", OneHotEncoder(**ohe_params), [\"sex\", \"pclass\"]) \n", |
213 | 219 | "])\n" |
214 | 220 | ] |
215 | 221 | }, |
|
222 | 228 | "'''\n", |
223 | 229 | "# Uncomment below if sklearn-pandas is not installed\n", |
224 | 230 | "#!pip install sklearn-pandas\n", |
| 231 | + "import sklearn\n", |
225 | 232 | "from sklearn_pandas import DataFrameMapper\n", |
| 233 | + "from packaging import version\n", |
| 234 | + "# for older scikit-learn versions use sparse, for newer sparse_output:\n", |
| 235 | + "if version.parse(sklearn.__version__) < version.parse('1.2'):\n", |
| 236 | + " ohe_params = {\"sparse\": False}\n", |
| 237 | + "else:\n", |
| 238 | + " ohe_params = {\"sparse_output\": False}\n", |
226 | 239 | "\n", |
227 | 240 | "# Impute, standardize the numeric features and one-hot encode the categorical features. \n", |
228 | 241 | "\n", |
|
235 | 248 | " ([\"age\", \"fare\"], many_to_many_transformer),\n", |
236 | 249 | " ([\"embarked\"], Pipeline(steps=[\n", |
237 | 250 | " (\"imputer\", SimpleImputer(strategy='constant', fill_value='missing')), \n", |
238 | | - " (\"encoder\", OneHotEncoder(sparse=False))])),\n", |
239 | | - " ([\"sex\", \"pclass\"], OneHotEncoder(sparse=False)) \n", |
| 251 | + " (\"encoder\", OneHotEncoder(**ohe_params))])),\n", |
| 252 | + " ([\"sex\", \"pclass\"], OneHotEncoder(**ohe_params)) \n", |
240 | 253 | "]\n", |
241 | 254 | "\n", |
242 | 255 | "\n", |
|
0 commit comments