Skip to content

Commit 5a0b227

Browse files
feat(starter-models): add Z-Image Turbo starter models (#8689)
## Summary Add Z-Image Turbo and related models to the starter models list for easy installation via the Model Manager: - **Z-Image Turbo** - Full precision Diffusers format (~13GB) - **Z-Image Turbo (quantized)** - GGUF Q4_K format (~4GB) - **Z-Image Qwen3 Text Encoder** - Full precision (~8GB) - **Z-Image Qwen3 Text Encoder (quantized)** - GGUF Q6_K format (~3.3GB) - **Z-Image ControlNet Union** - Unified ControlNet supporting Canny, HED, Depth, Pose, MLSD, and Inpainting modes The quantized Turbo model includes the quantized Qwen3 encoder as a dependency for automatic installation. ## Related Issues / Discussions Builds on the Z-Image Turbo support added in main. ## QA Instructions 1. Open Model Manager → Starter Models 2. Search for "Z-Image" 3. Verify all 5 models appear with correct descriptions 4. Install the quantized version and confirm the Qwen3 encoder dependency is also installed ## Merge Plan Standard merge, no special considerations. ## Checklist - [x] _The PR has a short but descriptive title, suitable for a changelog_ - [ ] _Tests added / updated (if applicable)_ - [ ] _❗Changes to a redux slice have a corresponding migration_ - [ ] _Documentation added / updated (if applicable)_ - [ ] _Updated `What's New` copy (if doing a release after this PR)_
2 parents 90e3400 + 1b5d91d commit 5a0b227

File tree

1 file changed

+70
-0
lines changed

1 file changed

+70
-0
lines changed

invokeai/backend/model_manager/starter_models.py

Lines changed: 70 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -690,6 +690,69 @@ class StarterModelBundle(BaseModel):
690690
)
691691
# endregion
692692

693+
# region Z-Image
694+
z_image_qwen3_encoder = StarterModel(
695+
name="Z-Image Qwen3 Text Encoder",
696+
base=BaseModelType.Any,
697+
source="Tongyi-MAI/Z-Image-Turbo::text_encoder",
698+
description="Qwen3 4B text encoder for Z-Image (full precision). ~8GB",
699+
type=ModelType.Qwen3Encoder,
700+
)
701+
702+
z_image_qwen3_encoder_quantized = StarterModel(
703+
name="Z-Image Qwen3 Text Encoder (quantized)",
704+
base=BaseModelType.Any,
705+
source="https://huggingface.co/worstplayer/Z-Image_Qwen_3_4b_text_encoder_GGUF/resolve/main/Qwen_3_4b-Q6_K.gguf",
706+
description="Qwen3 4B text encoder for Z-Image quantized to GGUF Q6_K format. ~3.3GB",
707+
type=ModelType.Qwen3Encoder,
708+
format=ModelFormat.GGUFQuantized,
709+
)
710+
711+
z_image_turbo = StarterModel(
712+
name="Z-Image Turbo",
713+
base=BaseModelType.ZImage,
714+
source="Tongyi-MAI/Z-Image-Turbo",
715+
description="Z-Image Turbo - fast 6B parameter text-to-image model with 8 inference steps. Supports bilingual prompts (English & Chinese). ~13GB",
716+
type=ModelType.Main,
717+
)
718+
719+
z_image_turbo_quantized = StarterModel(
720+
name="Z-Image Turbo (quantized)",
721+
base=BaseModelType.ZImage,
722+
source="https://huggingface.co/leejet/Z-Image-Turbo-GGUF/resolve/main/z_image_turbo-Q4_K.gguf",
723+
description="Z-Image Turbo quantized to GGUF Q4_K format. Requires separate Qwen3 text encoder. ~4GB",
724+
type=ModelType.Main,
725+
format=ModelFormat.GGUFQuantized,
726+
dependencies=[z_image_qwen3_encoder_quantized],
727+
)
728+
729+
z_image_turbo_q8 = StarterModel(
730+
name="Z-Image Turbo (Q8)",
731+
base=BaseModelType.ZImage,
732+
source="https://huggingface.co/leejet/Z-Image-Turbo-GGUF/resolve/main/z_image_turbo-Q8_0.gguf",
733+
description="Z-Image Turbo quantized to GGUF Q8_0 format. Higher quality, larger size. Requires separate Qwen3 text encoder. ~6.6GB",
734+
type=ModelType.Main,
735+
format=ModelFormat.GGUFQuantized,
736+
dependencies=[z_image_qwen3_encoder_quantized],
737+
)
738+
739+
z_image_controlnet_union = StarterModel(
740+
name="Z-Image ControlNet Union",
741+
base=BaseModelType.ZImage,
742+
source="https://huggingface.co/alibaba-pai/Z-Image-Turbo-Fun-Controlnet-Union-2.1/resolve/main/Z-Image-Turbo-Fun-Controlnet-Union-2.1-8steps.safetensors",
743+
description="Unified ControlNet for Z-Image Turbo supporting Canny, HED, Depth, Pose, MLSD, and Inpainting modes.",
744+
type=ModelType.ControlNet,
745+
)
746+
747+
z_image_controlnet_tile = StarterModel(
748+
name="Z-Image ControlNet Tile",
749+
base=BaseModelType.ZImage,
750+
source="https://huggingface.co/alibaba-pai/Z-Image-Turbo-Fun-Controlnet-Union-2.1/resolve/main/Z-Image-Turbo-Fun-Controlnet-Tile-2.1-8steps.safetensors",
751+
description="Dedicated Tile ControlNet for Z-Image Turbo. Useful for upscaling and adding detail. ~6.7GB",
752+
type=ModelType.ControlNet,
753+
)
754+
# endregion
755+
693756
# List of starter models, displayed on the frontend.
694757
# The order/sort of this list is not changed by the frontend - set it how you want it here.
695758
STARTER_MODELS: list[StarterModel] = [
@@ -766,6 +829,13 @@ class StarterModelBundle(BaseModel):
766829
cogview4,
767830
flux_krea,
768831
flux_krea_quantized,
832+
z_image_turbo,
833+
z_image_turbo_quantized,
834+
z_image_turbo_q8,
835+
z_image_qwen3_encoder,
836+
z_image_qwen3_encoder_quantized,
837+
z_image_controlnet_union,
838+
z_image_controlnet_tile,
769839
]
770840

771841
sd1_bundle: list[StarterModel] = [

0 commit comments

Comments
 (0)