|
| 1 | +"""Error Vector Magnitude (EVM) metric. |
| 2 | + |
| 3 | +EVM is a key performance indicator used in digital communication systems to quantify the difference |
| 4 | +between the ideal transmitted signal and the received signal. It provides a comprehensive measure |
| 5 | +of signal quality by considering both magnitude and phase errors. |
| 6 | +""" |
| 7 | + |
| 8 | +from typing import Any, Optional |
| 9 | + |
| 10 | +import torch |
| 11 | +from torch import Tensor |
| 12 | + |
| 13 | +from ..base import BaseMetric |
| 14 | +from ..registry import MetricRegistry |
| 15 | + |
| 16 | + |
| 17 | +@MetricRegistry.register_metric("evm") |
| 18 | +class ErrorVectorMagnitude(BaseMetric): |
| 19 | + """Error Vector Magnitude (EVM) metric. |
| 20 | + |
| 21 | + EVM measures the difference between the ideal constellation points and the received |
| 22 | + constellation points, expressed as a percentage. It captures both magnitude and phase |
| 23 | + errors in the received signal. Lower EVM values indicate better signal quality. |
| 24 | + |
| 25 | + EVM is calculated as: |
| 26 | + EVM(%) = sqrt(E[|error_vector|^2] / E[|reference_vector|^2]) * 100 |
| 27 | + |
| 28 | + where error_vector = received_signal - reference_signal |
| 29 | + |
| 30 | + Attributes: |
| 31 | + normalize (bool): Whether to normalize by reference signal power (default: True). |
| 32 | + mode (str): EVM calculation mode ('rms', 'peak', or 'percentile'). |
| 33 | + percentile (float): Percentile value when mode is 'percentile' (default: 95.0). |
| 34 | + """ |
| 35 | + |
| 36 | + is_differentiable = True |
| 37 | + higher_is_better = False |
| 38 | + |
| 39 | + def __init__(self, normalize: bool = True, mode: str = "rms", percentile: float = 95.0, name: Optional[str] = None, *args: Any, **kwargs: Any): |
| 40 | + """Initialize the EVM metric. |
| 41 | + |
| 42 | + Args: |
| 43 | + normalize (bool): Whether to normalize by reference signal power (default: True). |
| 44 | + mode (str): EVM calculation mode ('rms', 'peak', or 'percentile'). |
| 45 | + percentile (float): Percentile value when mode is 'percentile' (default: 95.0). |
| 46 | + name (Optional[str]): Optional name for the metric. |
| 47 | + *args: Variable length argument list passed to the base class. |
| 48 | + **kwargs: Arbitrary keyword arguments passed to the base class. |
| 49 | + """ |
| 50 | + super().__init__(name=name or "EVM") |
| 51 | + self.normalize = normalize |
| 52 | + self.mode = mode.lower() |
| 53 | + self.percentile = percentile |
| 54 | + |
| 55 | + if self.mode not in ["rms", "peak", "percentile"]: |
| 56 | + raise ValueError(f"Mode must be 'rms', 'peak', or 'percentile', got '{mode}'") |
| 57 | + |
| 58 | + if not 0 < percentile <= 100: |
| 59 | + raise ValueError(f"Percentile must be between 0 and 100, got {percentile}") |
| 60 | + |
| 61 | + def forward(self, x: Tensor, y: Tensor, *args: Any, **kwargs: Any) -> Tensor: |
| 62 | + """Compute the Error Vector Magnitude for the current batch. |
| 63 | + |
| 64 | + Args: |
| 65 | + x (Tensor): The transmitted/reference signal tensor. |
| 66 | + y (Tensor): The received signal tensor. |
| 67 | + *args: Variable length argument list (unused). |
| 68 | + **kwargs: Arbitrary keyword arguments (unused). |
| 69 | + |
| 70 | + Returns: |
| 71 | + Tensor: Error Vector Magnitude as a percentage. |
| 72 | + """ |
| 73 | + if x.shape != y.shape: |
| 74 | + raise ValueError(f"Input shapes must match: {x.shape} vs {y.shape}") |
| 75 | + |
| 76 | + # Handle empty tensors |
| 77 | + if x.numel() == 0: |
| 78 | + return torch.tensor(0.0, dtype=torch.float32, device=x.device) |
| 79 | + |
| 80 | + # Calculate error vector |
| 81 | + error_vector = y - x |
| 82 | + |
| 83 | + # Calculate error power (squared magnitude) |
| 84 | + error_power = torch.abs(error_vector) ** 2 |
| 85 | + |
| 86 | + if self.normalize: |
| 87 | + # Calculate reference power |
| 88 | + reference_power = torch.abs(x) ** 2 |
| 89 | + |
| 90 | + # Avoid division by zero |
| 91 | + reference_power = torch.clamp(reference_power, min=1e-12) |
| 92 | + |
| 93 | + # Normalize error power by reference power |
| 94 | + normalized_error = error_power / reference_power |
| 95 | + else: |
| 96 | + normalized_error = error_power |
| 97 | + |
| 98 | + # Calculate EVM based on mode |
| 99 | + if self.mode == "rms": |
| 100 | + # RMS EVM |
| 101 | + evm_squared = torch.mean(normalized_error) |
| 102 | + evm = torch.sqrt(evm_squared) |
| 103 | + elif self.mode == "peak": |
| 104 | + # Peak EVM |
| 105 | + evm_squared = torch.max(normalized_error) |
| 106 | + evm = torch.sqrt(evm_squared) |
| 107 | + elif self.mode == "percentile": |
| 108 | + # Percentile EVM |
| 109 | + evm_squared = torch.quantile(normalized_error.flatten(), self.percentile / 100.0) |
| 110 | + evm = torch.sqrt(evm_squared) |
| 111 | + |
| 112 | + # Convert to percentage |
| 113 | + evm_percent = evm * 100.0 |
| 114 | + |
| 115 | + return evm_percent |
| 116 | + |
| 117 | + def calculate_per_symbol_evm(self, x: Tensor, y: Tensor) -> Tensor: |
| 118 | + """Calculate EVM for each symbol separately. |
| 119 | + |
| 120 | + Args: |
| 121 | + x (Tensor): The transmitted/reference signal tensor. |
| 122 | + y (Tensor): The received signal tensor. |
| 123 | + |
| 124 | + Returns: |
| 125 | + Tensor: Per-symbol EVM values as percentages. |
| 126 | + """ |
| 127 | + if x.shape != y.shape: |
| 128 | + raise ValueError(f"Input shapes must match: {x.shape} vs {y.shape}") |
| 129 | + |
| 130 | + # Handle empty tensors |
| 131 | + if x.numel() == 0: |
| 132 | + return torch.tensor([], dtype=torch.float32, device=x.device) |
| 133 | + |
| 134 | + # Calculate error vector |
| 135 | + error_vector = y - x |
| 136 | + |
| 137 | + # Calculate per-symbol error magnitude |
| 138 | + error_magnitude = torch.abs(error_vector) |
| 139 | + |
| 140 | + if self.normalize: |
| 141 | + # Calculate per-symbol reference magnitude |
| 142 | + reference_magnitude = torch.abs(x) |
| 143 | + reference_magnitude = torch.clamp(reference_magnitude, min=1e-12) |
| 144 | + |
| 145 | + # Normalize by reference magnitude |
| 146 | + per_symbol_evm = error_magnitude / reference_magnitude |
| 147 | + else: |
| 148 | + per_symbol_evm = error_magnitude |
| 149 | + |
| 150 | + # Convert to percentage |
| 151 | + per_symbol_evm_percent = per_symbol_evm * 100.0 |
| 152 | + |
| 153 | + return per_symbol_evm_percent |
| 154 | + |
| 155 | + def calculate_statistics(self, x: Tensor, y: Tensor) -> dict: |
| 156 | + """Calculate comprehensive EVM statistics. |
| 157 | + |
| 158 | + Args: |
| 159 | + x (Tensor): The transmitted/reference signal tensor. |
| 160 | + y (Tensor): The received signal tensor. |
| 161 | + |
| 162 | + Returns: |
| 163 | + dict: Dictionary containing various EVM statistics. |
| 164 | + """ |
| 165 | + # Calculate per-symbol EVM |
| 166 | + per_symbol_evm = self.calculate_per_symbol_evm(x, y) |
| 167 | + |
| 168 | + # Calculate various statistics |
| 169 | + stats_dict = { |
| 170 | + "evm_rms": self.forward(x, y), |
| 171 | + "evm_mean": torch.mean(per_symbol_evm), |
| 172 | + "evm_std": torch.std(per_symbol_evm), |
| 173 | + "evm_min": torch.min(per_symbol_evm), |
| 174 | + "evm_max": torch.max(per_symbol_evm), |
| 175 | + "evm_median": torch.median(per_symbol_evm), |
| 176 | + "evm_95th": torch.quantile(per_symbol_evm.flatten(), 0.95), |
| 177 | + "evm_99th": torch.quantile(per_symbol_evm.flatten(), 0.99), |
| 178 | + "evm_per_symbol": per_symbol_evm, |
| 179 | + } |
| 180 | + |
| 181 | + return stats_dict |
| 182 | + |
| 183 | + |
| 184 | +# Alias for backward compatibility |
| 185 | +EVM = ErrorVectorMagnitude |
0 commit comments