|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "# More efficient data movement with MPI" |
| 8 | + ] |
| 9 | + }, |
| 10 | + { |
| 11 | + "cell_type": "markdown", |
| 12 | + "metadata": {}, |
| 13 | + "source": [ |
| 14 | + "Just like [we did](memmap.ipynb) manually with memmap,\n", |
| 15 | + "you can move data more efficiently with MPI by sending it to just one engine,\n", |
| 16 | + "and using MPI to broadcast it to the rest of the engines.\n" |
| 17 | + ] |
| 18 | + }, |
| 19 | + { |
| 20 | + "cell_type": "code", |
| 21 | + "execution_count": null, |
| 22 | + "metadata": { |
| 23 | + "collapsed": false, |
| 24 | + "jupyter": { |
| 25 | + "outputs_hidden": false |
| 26 | + } |
| 27 | + }, |
| 28 | + "outputs": [], |
| 29 | + "source": [ |
| 30 | + "import socket\n", |
| 31 | + "import os, sys, re\n", |
| 32 | + "\n", |
| 33 | + "import numpy as np\n", |
| 34 | + "\n", |
| 35 | + "import ipyparallel as ipp" |
| 36 | + ] |
| 37 | + }, |
| 38 | + { |
| 39 | + "cell_type": "markdown", |
| 40 | + "metadata": {}, |
| 41 | + "source": [ |
| 42 | + "For this demo, I will connect to a cluster with engines started with MPI.\n", |
| 43 | + "If you have MPI and mpi4py on your machine, you can start a local cluster with MPI with:\n", |
| 44 | + "\n", |
| 45 | + " ipcluster start -n 8 --engines=MPI --profile mpi" |
| 46 | + ] |
| 47 | + }, |
| 48 | + { |
| 49 | + "cell_type": "code", |
| 50 | + "execution_count": null, |
| 51 | + "metadata": { |
| 52 | + "collapsed": false, |
| 53 | + "jupyter": { |
| 54 | + "outputs_hidden": false |
| 55 | + } |
| 56 | + }, |
| 57 | + "outputs": [], |
| 58 | + "source": [ |
| 59 | + "mpi_profile = 'mpi'\n", |
| 60 | + "rc = ipp.Client(profile=mpi_profile)\n", |
| 61 | + "eall = rc[:]\n", |
| 62 | + "root = rc[-1]" |
| 63 | + ] |
| 64 | + }, |
| 65 | + { |
| 66 | + "cell_type": "code", |
| 67 | + "execution_count": null, |
| 68 | + "metadata": { |
| 69 | + "collapsed": false, |
| 70 | + "jupyter": { |
| 71 | + "outputs_hidden": false |
| 72 | + } |
| 73 | + }, |
| 74 | + "outputs": [], |
| 75 | + "source": [ |
| 76 | + "%px from mpi4py.MPI import COMM_WORLD as MPI" |
| 77 | + ] |
| 78 | + }, |
| 79 | + { |
| 80 | + "cell_type": "code", |
| 81 | + "execution_count": null, |
| 82 | + "metadata": { |
| 83 | + "collapsed": false, |
| 84 | + "jupyter": { |
| 85 | + "outputs_hidden": false |
| 86 | + } |
| 87 | + }, |
| 88 | + "outputs": [], |
| 89 | + "source": [ |
| 90 | + "mpi_ranks = eall.apply_async(lambda : MPI.Get_rank()).get_dict()\n", |
| 91 | + "root_rank = root.apply_sync(lambda : MPI.Get_rank())\n", |
| 92 | + "mpi_ranks" |
| 93 | + ] |
| 94 | + }, |
| 95 | + { |
| 96 | + "cell_type": "code", |
| 97 | + "execution_count": null, |
| 98 | + "metadata": { |
| 99 | + "collapsed": false, |
| 100 | + "jupyter": { |
| 101 | + "outputs_hidden": false |
| 102 | + } |
| 103 | + }, |
| 104 | + "outputs": [], |
| 105 | + "source": [ |
| 106 | + "sz = 1024\n", |
| 107 | + "data = np.random.random((sz, sz))\n", |
| 108 | + "data = data.dot(data.T)" |
| 109 | + ] |
| 110 | + }, |
| 111 | + { |
| 112 | + "cell_type": "code", |
| 113 | + "execution_count": null, |
| 114 | + "metadata": { |
| 115 | + "collapsed": false, |
| 116 | + "jupyter": { |
| 117 | + "outputs_hidden": false |
| 118 | + } |
| 119 | + }, |
| 120 | + "outputs": [], |
| 121 | + "source": [ |
| 122 | + "%%time \n", |
| 123 | + "ar = eall.push({'data': data}, block=False)\n", |
| 124 | + "ar.wait_interactive()" |
| 125 | + ] |
| 126 | + }, |
| 127 | + { |
| 128 | + "cell_type": "code", |
| 129 | + "execution_count": null, |
| 130 | + "metadata": { |
| 131 | + "collapsed": false, |
| 132 | + "jupyter": { |
| 133 | + "outputs_hidden": false |
| 134 | + } |
| 135 | + }, |
| 136 | + "outputs": [], |
| 137 | + "source": [ |
| 138 | + "@ipp.interactive\n", |
| 139 | + "def _bcast(key, root_rank):\n", |
| 140 | + " \"\"\"function to run on engines as part of broadcast\"\"\"\n", |
| 141 | + " g = globals()\n", |
| 142 | + " obj = g.get(key, None)\n", |
| 143 | + " obj = MPI.bcast(obj, root_rank)\n", |
| 144 | + " g[key] = obj\n", |
| 145 | + "\n", |
| 146 | + "def broadcast(key, obj, dv, root, root_rank):\n", |
| 147 | + " \"\"\"More efficient broadcast by doing push to root,\n", |
| 148 | + " and MPI broadcast to other engines.\n", |
| 149 | + " \n", |
| 150 | + " Still O(N) messages, but all but one message is always small.\n", |
| 151 | + " \"\"\"\n", |
| 152 | + " root.push({key : obj}, block=False)\n", |
| 153 | + " return dv.apply_async(_bcast, key, root_rank)" |
| 154 | + ] |
| 155 | + }, |
| 156 | + { |
| 157 | + "cell_type": "code", |
| 158 | + "execution_count": null, |
| 159 | + "metadata": { |
| 160 | + "collapsed": false, |
| 161 | + "jupyter": { |
| 162 | + "outputs_hidden": false |
| 163 | + } |
| 164 | + }, |
| 165 | + "outputs": [], |
| 166 | + "source": [ |
| 167 | + "%%time\n", |
| 168 | + "ar = broadcast('data', data, eall, root, root_rank)\n", |
| 169 | + "ar.wait_interactive()" |
| 170 | + ] |
| 171 | + }, |
| 172 | + { |
| 173 | + "cell_type": "code", |
| 174 | + "execution_count": null, |
| 175 | + "metadata": { |
| 176 | + "collapsed": false, |
| 177 | + "jupyter": { |
| 178 | + "outputs_hidden": false |
| 179 | + } |
| 180 | + }, |
| 181 | + "outputs": [], |
| 182 | + "source": [ |
| 183 | + "eall.apply_sync(np.linalg.norm, parallel.Reference('data'), 2)" |
| 184 | + ] |
| 185 | + }, |
| 186 | + { |
| 187 | + "cell_type": "code", |
| 188 | + "execution_count": null, |
| 189 | + "metadata": {}, |
| 190 | + "outputs": [], |
| 191 | + "source": [] |
| 192 | + } |
| 193 | + ], |
| 194 | + "metadata": { |
| 195 | + "kernelspec": { |
| 196 | + "display_name": "Python 3 (ipykernel)", |
| 197 | + "language": "python", |
| 198 | + "name": "python3" |
| 199 | + }, |
| 200 | + "language_info": { |
| 201 | + "codemirror_mode": { |
| 202 | + "name": "ipython", |
| 203 | + "version": 3 |
| 204 | + }, |
| 205 | + "file_extension": ".py", |
| 206 | + "mimetype": "text/x-python", |
| 207 | + "name": "python", |
| 208 | + "nbconvert_exporter": "python", |
| 209 | + "pygments_lexer": "ipython3", |
| 210 | + "version": "3.8.8" |
| 211 | + }, |
| 212 | + "widgets": { |
| 213 | + "application/vnd.jupyter.widget-state+json": { |
| 214 | + "state": {}, |
| 215 | + "version_major": 2, |
| 216 | + "version_minor": 0 |
| 217 | + } |
| 218 | + } |
| 219 | + }, |
| 220 | + "nbformat": 4, |
| 221 | + "nbformat_minor": 4 |
| 222 | +} |
0 commit comments