Skip to content

Commit b91405d

Browse files
authored
add flux transformer spec (#20478)
- adds the initial matmul tuning spec for flux transformer Signed-off-by: PhaneeshB <[email protected]>
1 parent 722c214 commit b91405d

File tree

1 file changed

+170
-0
lines changed

1 file changed

+170
-0
lines changed
Lines changed: 170 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,170 @@
1+
module attributes {transform.with_named_sequence} {
2+
//===----------------------------------------------------------------------===//
3+
// Tuning infra
4+
//===----------------------------------------------------------------------===//
5+
6+
transform.named_sequence @apply_op_config(%arg0: !transform.any_op {transform.readonly}, %arg1: !transform.any_param {transform.readonly}) {
7+
transform.annotate %arg0 "compilation_info" = %arg1 : !transform.any_op, !transform.any_param
8+
transform.yield
9+
}
10+
11+
12+
// TUNING_SPEC_BEGIN DO NOT REMOVE
13+
14+
//===----------------------------------------------------------------------===//
15+
// Matmul tuning
16+
//===----------------------------------------------------------------------===//
17+
18+
transform.named_sequence @match_contraction_4608x21504x3072_bf16xbf16xf32(%arg0: !transform.any_op {transform.readonly}) -> (!transform.any_op, !transform.any_param) {
19+
%inputs, %outputs = transform.iree.match.cast_compatible_dag_from_root %arg0 {
20+
^bb0(%arg1: tensor<4608x3072xbf16>, %arg2: tensor<21504x3072xbf16>, %arg3: tensor<4608x21504xf32>):
21+
%1 = linalg.generic {indexing_maps = [affine_map<(d0, d1, d2) -> (d0, d2)>, affine_map<(d0, d1, d2) -> (d1, d2)>, affine_map<(d0, d1, d2) -> (d0, d1)>], iterator_types = ["parallel", "parallel", "reduction"]} ins(%arg1, %arg2 : tensor<4608x3072xbf16>, tensor<21504x3072xbf16>) outs(%arg3 : tensor<4608x21504xf32>) {
22+
^bb0(%in: bf16, %in_0: bf16, %out: f32):
23+
%2 = arith.extf %in : bf16 to f32
24+
%3 = arith.extf %in_0 : bf16 to f32
25+
%4 = arith.mulf %2, %3 : f32
26+
%5 = arith.addf %out, %4 : f32
27+
linalg.yield %5 : f32
28+
} -> tensor<4608x21504xf32>
29+
} : (!transform.any_op) -> (!transform.any_value, !transform.any_value)
30+
%0 = transform.param.constant #iree_codegen.compilation_info<lowering_config = #iree_gpu.lowering_config<{mma_kind = #iree_gpu.mma_layout<MFMA_F32_16x16x16_BF16>, promote_operands = [0, 1], reduction = [0, 0, 2], subgroup = [6, 4, 0], subgroup_m_count = 4 : i64, subgroup_n_count = 2 : i64, workgroup = [384, 128, 0]}>, translation_info = <pipeline = LLVMGPUTileAndFuse workgroup_size = [512, 1, 1] subgroup_size = 64, {gpu_pipeline_options = #iree_gpu.pipeline_options<prefetch_shared_memory = true, no_reduce_shared_memory_bank_conflicts = false>, llvm_func_attrs = {"amdgpu-waves-per-eu" = "2"}}>> -> !transform.any_param
31+
transform.yield %arg0, %0 : !transform.any_op, !transform.any_param
32+
}
33+
34+
transform.named_sequence @match_contraction_4608x3072x4608_bf16xbf16xf32(%arg0: !transform.any_op {transform.readonly}) -> (!transform.any_op, !transform.any_param) {
35+
%inputs, %outputs = transform.iree.match.cast_compatible_dag_from_root %arg0 {
36+
^bb0(%arg1: tensor<15360x4608xbf16>, %arg2: tensor<3072x15360xbf16>, %arg3: tensor<4608x3072xf32>):
37+
%1 = linalg.generic {indexing_maps = [affine_map<(d0, d1, d2) -> (d2, d0)>, affine_map<(d0, d1, d2) -> (d1, d2)>, affine_map<(d0, d1, d2) -> (d0, d1)>], iterator_types = ["parallel", "parallel", "reduction"]} ins(%arg1, %arg2 : tensor<15360x4608xbf16>, tensor<3072x15360xbf16>) outs(%arg3 : tensor<4608x3072xf32>) {
38+
^bb0(%in: bf16, %in_0: bf16, %out: f32):
39+
%2 = arith.extf %in : bf16 to f32
40+
%3 = arith.extf %in_0 : bf16 to f32
41+
%4 = arith.mulf %2, %3 : f32
42+
%5 = arith.addf %out, %4 : f32
43+
linalg.yield %5 : f32
44+
} -> tensor<4608x3072xf32>
45+
} : (!transform.any_op) -> (!transform.any_value, !transform.any_value)
46+
%0 = transform.param.constant #iree_codegen.compilation_info<lowering_config = #iree_gpu.lowering_config<{mma_kind = #iree_gpu.mma_layout<MFMA_F32_16x16x16_BF16>, promote_operands = [0, 1], reduction = [0, 0, 2], subgroup = [4, 4, 0], subgroup_m_count = 4 : i64, subgroup_n_count = 1 : i64, workgroup = [256, 64, 0]}>, translation_info = <pipeline = LLVMGPUTileAndFuse workgroup_size = [256, 1, 1] subgroup_size = 64, {gpu_pipeline_options = #iree_gpu.pipeline_options<prefetch_shared_memory = true, no_reduce_shared_memory_bank_conflicts = false>, llvm_func_attrs = {"amdgpu-waves-per-eu" = "2"}}>> -> !transform.any_param
47+
transform.yield %arg0, %0 : !transform.any_op, !transform.any_param
48+
}
49+
50+
transform.named_sequence @match_contraction_4096x12288x3072_bf16xbf16xf32(%arg0: !transform.any_op {transform.readonly}) -> (!transform.any_op, !transform.any_param) {
51+
%inputs, %outputs = transform.iree.match.cast_compatible_dag_from_root %arg0 {
52+
^bb0(%arg1: tensor<4096x3072xbf16>, %arg2: tensor<12288x3072xbf16>, %arg3: tensor<4096x12288xf32>):
53+
%1 = linalg.generic {indexing_maps = [affine_map<(d0, d1, d2) -> (d0, d2)>, affine_map<(d0, d1, d2) -> (d1, d2)>, affine_map<(d0, d1, d2) -> (d0, d1)>], iterator_types = ["parallel", "parallel", "reduction"]} ins(%arg1, %arg2 : tensor<4096x3072xbf16>, tensor<12288x3072xbf16>) outs(%arg3 : tensor<4096x12288xf32>) {
54+
^bb0(%in: bf16, %in_0: bf16, %out: f32):
55+
%2 = arith.extf %in : bf16 to f32
56+
%3 = arith.extf %in_0 : bf16 to f32
57+
%4 = arith.mulf %2, %3 : f32
58+
%5 = arith.addf %out, %4 : f32
59+
linalg.yield %5 : f32
60+
} -> tensor<4096x12288xf32>
61+
} : (!transform.any_op) -> (!transform.any_value, !transform.any_value)
62+
%0 = transform.param.constant #iree_codegen.compilation_info<lowering_config = #iree_gpu.lowering_config<{mma_kind = #iree_gpu.mma_layout<MFMA_F32_16x16x16_BF16>, promote_operands = [0, 1], reduction = [0, 0, 6], subgroup = [2, 4, 0], subgroup_m_count = 4 : i64, subgroup_n_count = 2 : i64, workgroup = [128, 128, 0]}>, translation_info = <pipeline = LLVMGPUTileAndFuse workgroup_size = [512, 1, 1] subgroup_size = 64, {gpu_pipeline_options = #iree_gpu.pipeline_options<prefetch_shared_memory = true, no_reduce_shared_memory_bank_conflicts = false>, llvm_func_attrs = {"amdgpu-waves-per-eu" = "2"}}>> -> !transform.any_param
63+
transform.yield %arg0, %0 : !transform.any_op, !transform.any_param
64+
}
65+
66+
transform.named_sequence @match_contraction_4096x3072x12288_bf16xbf16xf32(%arg0: !transform.any_op {transform.readonly}) -> (!transform.any_op, !transform.any_param) {
67+
%inputs, %outputs = transform.iree.match.cast_compatible_dag_from_root %arg0 {
68+
^bb0(%arg1: tensor<4096x12288xbf16>, %arg2: tensor<3072x12288xbf16>, %arg3: tensor<4096x3072xf32>):
69+
%1 = linalg.generic {indexing_maps = [affine_map<(d0, d1, d2) -> (d0, d2)>, affine_map<(d0, d1, d2) -> (d1, d2)>, affine_map<(d0, d1, d2) -> (d0, d1)>], iterator_types = ["parallel", "parallel", "reduction"]} ins(%arg1, %arg2 : tensor<4096x12288xbf16>, tensor<3072x12288xbf16>) outs(%arg3 : tensor<4096x3072xf32>) {
70+
^bb0(%in: bf16, %in_0: bf16, %out: f32):
71+
%2 = arith.extf %in : bf16 to f32
72+
%3 = arith.extf %in_0 : bf16 to f32
73+
%4 = arith.mulf %2, %3 : f32
74+
%5 = arith.addf %out, %4 : f32
75+
linalg.yield %5 : f32
76+
} -> tensor<4096x3072xf32>
77+
} : (!transform.any_op) -> (!transform.any_value, !transform.any_value)
78+
%0 = transform.param.constant #iree_codegen.compilation_info<lowering_config = #iree_gpu.lowering_config<{mma_kind = #iree_gpu.mma_layout<MFMA_F32_16x16x16_BF16>, promote_operands = [0, 1], reduction = [0, 0, 6], subgroup = [4, 2, 0], subgroup_m_count = 2 : i64, subgroup_n_count = 4 : i64, workgroup = [128, 128, 0]}>, translation_info = <pipeline = LLVMGPUTileAndFuse workgroup_size = [512, 1, 1] subgroup_size = 64, {gpu_pipeline_options = #iree_gpu.pipeline_options<prefetch_shared_memory = true, no_reduce_shared_memory_bank_conflicts = false>, llvm_func_attrs = {"amdgpu-waves-per-eu" = "2"}}>> -> !transform.any_param
79+
transform.yield %arg0, %0 : !transform.any_op, !transform.any_param
80+
}
81+
82+
transform.named_sequence @match_contraction_72x4096x3072_bf16xbf16xf32(%arg0: !transform.any_op {transform.readonly}) -> (!transform.any_op, !transform.any_param) {
83+
%inputs, %outputs = transform.iree.match.cast_compatible_dag_from_root %arg0 {
84+
^bb0(%arg1: tensor<4096x3072xbf16>, %arg2: tensor<72x128x3072xbf16>, %arg3: tensor<72x4096x128xf32>):
85+
%1 = linalg.generic {indexing_maps = [affine_map<(d0, d1, d2, d3) -> (d1, d3)>, affine_map<(d0, d1, d2, d3) -> (d0, d2, d3)>, affine_map<(d0, d1, d2, d3) -> (d0, d1, d2)>], iterator_types = ["parallel", "parallel", "parallel", "reduction"]} ins(%arg1, %arg2 : tensor<4096x3072xbf16>, tensor<72x128x3072xbf16>) outs(%arg3 : tensor<72x4096x128xf32>) {
86+
^bb0(%in: bf16, %in_0: bf16, %out: f32):
87+
%2 = arith.extf %in : bf16 to f32
88+
%3 = arith.extf %in_0 : bf16 to f32
89+
%4 = arith.mulf %2, %3 : f32
90+
%5 = arith.addf %out, %4 : f32
91+
linalg.yield %5 : f32
92+
} -> tensor<72x4096x128xf32>
93+
} : (!transform.any_op) -> (!transform.any_value, !transform.any_value)
94+
%0 = transform.param.constant #iree_codegen.compilation_info<lowering_config = #iree_gpu.lowering_config<{mma_kind = #iree_gpu.mma_layout<MFMA_F32_16x16x16_BF16>, promote_operands = [0, 1], reduction = [0, 0, 0, 2], subgroup = [4, 2, 2, 0], subgroup_m_count = 8 : i64, subgroup_n_count = 1 : i64, workgroup = [4, 256, 32, 0]}>, translation_info = <pipeline = LLVMGPUTileAndFuse workgroup_size = [512, 1, 1] subgroup_size = 64, {gpu_pipeline_options = #iree_gpu.pipeline_options<prefetch_shared_memory = true, no_reduce_shared_memory_bank_conflicts = false>, llvm_func_attrs = {"amdgpu-waves-per-eu" = "2"}}>> -> !transform.any_param
95+
transform.yield %arg0, %0 : !transform.any_op, !transform.any_param
96+
}
97+
98+
transform.named_sequence @match_contraction_4096x3072x3072_bf16xbf16xf32(%arg0: !transform.any_op {transform.readonly}) -> (!transform.any_op, !transform.any_param) {
99+
%inputs, %outputs = transform.iree.match.cast_compatible_dag_from_root %arg0 {
100+
^bb0(%arg1: tensor<4096x3072xbf16>, %arg2: tensor<3072x3072xbf16>, %arg3: tensor<4096x3072xf32>):
101+
%1 = linalg.generic {indexing_maps = [affine_map<(d0, d1, d2) -> (d0, d2)>, affine_map<(d0, d1, d2) -> (d1, d2)>, affine_map<(d0, d1, d2) -> (d0, d1)>], iterator_types = ["parallel", "parallel", "reduction"]} ins(%arg1, %arg2 : tensor<4096x3072xbf16>, tensor<3072x3072xbf16>) outs(%arg3 : tensor<4096x3072xf32>) {
102+
^bb0(%in: bf16, %in_0: bf16, %out: f32):
103+
%2 = arith.extf %in : bf16 to f32
104+
%3 = arith.extf %in_0 : bf16 to f32
105+
%4 = arith.mulf %2, %3 : f32
106+
%5 = arith.addf %out, %4 : f32
107+
linalg.yield %5 : f32
108+
} -> tensor<4096x3072xf32>
109+
} : (!transform.any_op) -> (!transform.any_value, !transform.any_value)
110+
%0 = transform.param.constant #iree_codegen.compilation_info<lowering_config = #iree_gpu.lowering_config<{mma_kind = #iree_gpu.mma_layout<MFMA_F32_16x16x16_BF16>, promote_operands = [0, 1], reduction = [0, 0, 2], subgroup = [4, 6, 0], subgroup_m_count = 2 : i64, subgroup_n_count = 2 : i64, workgroup = [128, 192, 0]}>, translation_info = <pipeline = LLVMGPUTileAndFuse workgroup_size = [256, 1, 1] subgroup_size = 64, {gpu_pipeline_options = #iree_gpu.pipeline_options<prefetch_shared_memory = true, no_reduce_shared_memory_bank_conflicts = false>, llvm_func_attrs = {"amdgpu-waves-per-eu" = "2"}}>> -> !transform.any_param
111+
transform.yield %arg0, %0 : !transform.any_op, !transform.any_param
112+
}
113+
114+
transform.named_sequence @match_contraction_512x12288x3072_bf16xbf16xf32(%arg0: !transform.any_op {transform.readonly}) -> (!transform.any_op, !transform.any_param) {
115+
%inputs, %outputs = transform.iree.match.cast_compatible_dag_from_root %arg0 {
116+
^bb0(%arg1: tensor<512x3072xbf16>, %arg2: tensor<12288x3072xbf16>, %arg3: tensor<512x12288xf32>):
117+
%1 = linalg.generic {indexing_maps = [affine_map<(d0, d1, d2) -> (d0, d2)>, affine_map<(d0, d1, d2) -> (d1, d2)>, affine_map<(d0, d1, d2) -> (d0, d1)>], iterator_types = ["parallel", "parallel", "reduction"]} ins(%arg1, %arg2 : tensor<512x3072xbf16>, tensor<12288x3072xbf16>) outs(%arg3 : tensor<512x12288xf32>) {
118+
^bb0(%in: bf16, %in_0: bf16, %out: f32):
119+
%2 = arith.extf %in : bf16 to f32
120+
%3 = arith.extf %in_0 : bf16 to f32
121+
%4 = arith.mulf %2, %3 : f32
122+
%5 = arith.addf %out, %4 : f32
123+
linalg.yield %5 : f32
124+
} -> tensor<512x12288xf32>
125+
} : (!transform.any_op) -> (!transform.any_value, !transform.any_value)
126+
%0 = transform.param.constant #iree_codegen.compilation_info<lowering_config = #iree_gpu.lowering_config<{mma_kind = #iree_gpu.mma_layout<MFMA_F32_16x16x16_BF16>, promote_operands = [0, 1], reduction = [0, 0, 6], subgroup = [4, 1, 0], subgroup_m_count = 1 : i64, subgroup_n_count = 4 : i64, workgroup = [64, 64, 0]}>, translation_info = <pipeline = LLVMGPUTileAndFuse workgroup_size = [256, 1, 1] subgroup_size = 64, {gpu_pipeline_options = #iree_gpu.pipeline_options<prefetch_shared_memory = true, no_reduce_shared_memory_bank_conflicts = false>, llvm_func_attrs = {"amdgpu-waves-per-eu" = "2"}}>> -> !transform.any_param
127+
transform.yield %arg0, %0 : !transform.any_op, !transform.any_param
128+
}
129+
130+
transform.named_sequence @match_contraction_512x3072x12288_bf16xbf16xf32(%arg0: !transform.any_op {transform.readonly}) -> (!transform.any_op, !transform.any_param) {
131+
%inputs, %outputs = transform.iree.match.cast_compatible_dag_from_root %arg0 {
132+
^bb0(%arg1: tensor<512x12288xbf16>, %arg2: tensor<3072x12288xbf16>, %arg3: tensor<512x3072xf32>):
133+
%1 = linalg.generic {indexing_maps = [affine_map<(d0, d1, d2) -> (d0, d2)>, affine_map<(d0, d1, d2) -> (d1, d2)>, affine_map<(d0, d1, d2) -> (d0, d1)>], iterator_types = ["parallel", "parallel", "reduction"]} ins(%arg1, %arg2 : tensor<512x12288xbf16>, tensor<3072x12288xbf16>) outs(%arg3 : tensor<512x3072xf32>) {
134+
^bb0(%in: bf16, %in_0: bf16, %out: f32):
135+
%2 = arith.extf %in : bf16 to f32
136+
%3 = arith.extf %in_0 : bf16 to f32
137+
%4 = arith.mulf %2, %3 : f32
138+
%5 = arith.addf %out, %4 : f32
139+
linalg.yield %5 : f32
140+
} -> tensor<512x3072xf32>
141+
} : (!transform.any_op) -> (!transform.any_value, !transform.any_value)
142+
%0 = transform.param.constant #iree_codegen.compilation_info<lowering_config = #iree_gpu.lowering_config<{mma_kind = #iree_gpu.mma_layout<MFMA_F32_16x16x16_BF16>, promote_operands = [0, 1], reduction = [0, 0, 6], subgroup = [4, 2, 0], subgroup_m_count = 1 : i64, subgroup_n_count = 3 : i64, workgroup = [64, 96, 0]}>, translation_info = <pipeline = LLVMGPUTileAndFuse workgroup_size = [192, 1, 1] subgroup_size = 64, {gpu_pipeline_options = #iree_gpu.pipeline_options<prefetch_shared_memory = true, no_reduce_shared_memory_bank_conflicts = false>, llvm_func_attrs = {"amdgpu-waves-per-eu" = "2"}}>> -> !transform.any_param
143+
transform.yield %arg0, %0 : !transform.any_op, !transform.any_param
144+
}
145+
146+
// TUNING_SPEC_END DO NOT REMOVE
147+
148+
//===----------------------------------------------------------------------===//
149+
// Entry point
150+
//===----------------------------------------------------------------------===//
151+
152+
transform.named_sequence @__kernel_config(%vairant_op: !transform.any_op {transform.consumed}) {
153+
transform.foreach_match in %vairant_op
154+
155+
// TUNING_MATCH_BEGIN DO NOT REMOVE
156+
@match_contraction_4608x21504x3072_bf16xbf16xf32 -> @apply_op_config // 588
157+
, @match_contraction_4608x3072x4608_bf16xbf16xf32 -> @apply_op_config // 603
158+
, @match_contraction_4096x12288x3072_bf16xbf16xf32 -> @apply_op_config // 40
159+
, @match_contraction_4096x3072x12288_bf16xbf16xf32 -> @apply_op_config // 41
160+
, @match_contraction_72x4096x3072_bf16xbf16xf32 -> @apply_op_config // 19
161+
, @match_contraction_4096x3072x3072_bf16xbf16xf32 -> @apply_op_config // 38
162+
, @match_contraction_512x12288x3072_bf16xbf16xf32 -> @apply_op_config // 44
163+
, @match_contraction_512x3072x12288_bf16xbf16xf32 -> @apply_op_config // 45
164+
165+
// TUNING_MATCH_END DO NOT REMOVE
166+
167+
: (!transform.any_op) -> !transform.any_op
168+
transform.yield
169+
}
170+
}

0 commit comments

Comments
 (0)