Skip to content

Commit e29e98d

Browse files
authored
Fix typos. NFC. (#20503)
1 parent 66940f9 commit e29e98d

File tree

6 files changed

+21
-21
lines changed

6 files changed

+21
-21
lines changed

compiler/src/iree/compiler/Codegen/Dialect/VectorExt/IR/VectorExtOps.cpp

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -569,7 +569,7 @@ static Value foldTransferGatherFromStep(TransferGatherOp gatherOp) {
569569
int64_t resultDim = cast<AffineDimExpr>(map.getResult(0)).getPosition();
570570

571571
// If the map is indexing along the memory dimension, and the vector is
572-
// contigious, this is a contigious load on this dimension.
572+
// contiguous, this is a contiguous load on this dimension.
573573
if (resultDim == index) {
574574
return {Value(), AffineMap(), true};
575575
}

compiler/src/iree/compiler/Codegen/Dialect/VectorExt/IR/VectorExtOps.td

Lines changed: 8 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -139,22 +139,22 @@ def IREEVectorExt_TransferGatherOp : IREEVectorExt_PureOp<"transfer_gather", [
139139
the result vector and the memory dimensions being indexed.
140140

141141
The operation is a generalization of `vector.transfer_read` op, where the
142-
slice from which the read is performed is not guranteed to be contigious,
142+
slice from which the read is performed is not guranteed to be contiguous,
143143
and instead how the slice is gathered is defined explicitly in the
144144
operation.
145145

146146
The operation can be thought of as:
147-
1. A contigious slice gathered from the source as described by the operation
148-
2. A `vector.transfer_read` on the contigious slice
147+
1. A contiguous slice gathered from the source as described by the operation
148+
2. A `vector.transfer_read` on the contiguous slice
149149

150150
The operation defines `permutation_map`, `padding`, `mask`, `in_bounds` in
151151
the same way as `vector.transfer_read` defines, but on the inferred
152-
contigious slice.
152+
contiguous slice.
153153

154-
The other parameters of the operation define how the contigious slice is
154+
The other parameters of the operation define how the contiguous slice is
155155
gathered from the source. `indices` define a base to offset the source by.
156156
`indexed` defines for each dimension if the dimension is gathered or
157-
contigious.
157+
contiguous.
158158

159159
The `indices` contains a base to offset the source by. The `indexed` array
160160
defines if a dimension is gathered or not. For example, for the following
@@ -194,7 +194,7 @@ def IREEVectorExt_TransferGatherOp : IREEVectorExt_PureOp<"transfer_gather", [
194194
```
195195

196196
With these additional parameters, the operation can define a supervector
197-
read from a non-contigious slice. For example:
197+
read from a non-contiguous slice. For example:
198198

199199
```
200200
source: memref<8192x8x16xf32>
@@ -222,7 +222,7 @@ def IREEVectorExt_TransferGatherOp : IREEVectorExt_PureOp<"transfer_gather", [
222222
The crucial structure of the operation relies on the index_vec and
223223
the result vector's indexing being defined based on the dimensions of the
224224
memory. This mapping can be exploited to simplify gathered dimensions
225-
to contigious dimensions.
225+
to contiguous dimensions.
226226
}];
227227

228228
let extraClassDeclaration = [{

compiler/src/iree/compiler/Codegen/LLVMGPU/KernelConfig.cpp

Lines changed: 8 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -96,7 +96,7 @@ llvm::cl::opt<bool>
9696
llvm::cl::desc("force use of wmma operations for tensorcore"),
9797
llvm::cl::init(false));
9898

99-
/// Flag used to toggle using mma.sync vs wmma when targetting tensorcore.
99+
/// Flag used to toggle using mma.sync vs wmma when targeting tensorcore.
100100
llvm::cl::opt<bool>
101101
clGPUUseMMASync("iree-codegen-llvmgpu-use-mma-sync",
102102
llvm::cl::desc("force use mma sync instead of wmma ops"),
@@ -160,7 +160,7 @@ static bool needsLoweringConfigPropagation(
160160
static SmallVector<TileWorkgroupSizePair>
161161
getMatmulConfig(IREE::GPU::TargetAttr target) {
162162
SmallVector<TileWorkgroupSizePair> tileSizes;
163-
// Pick tile size so that M*K and K*N dividible by wgSize * \*vecSize=*\4.
163+
// Pick tile size so that M*K and K*N divisible by wgSize * \*vecSize=*\4.
164164
// This way workgroup memory copy don't need to be masked. Once we support
165165
// masked load we can get performance out of more configuration.
166166

@@ -189,7 +189,7 @@ getTensorCoreConfig(SmallVectorImpl<TileWorkgroupSizePair> &tileSizes,
189189
Type elementType, int64_t M, int64_t N, int64_t K) {
190190
// Based on early analysis we found that 128x256x32_3 gives acceptable
191191
// performance across many of the large matrix sizes for f16 and fp32. This
192-
// needs to be refined into a better strategy based on empircal data but this
192+
// needs to be refined into a better strategy based on empirical data but this
193193
// gives us a quick solution to achieve performance in the right order of
194194
// magnitude for large square like cases.
195195
int64_t parallelDim = M * N;
@@ -1164,7 +1164,7 @@ static LogicalResult setAttentionIntrinsicBasedVectorDistributionConfig(
11641164
// The subgroup distribution in attention is controlled by the second matmul
11651165
// (Parallel dimension distribution is usually (almost always) controlled by
11661166
// the last reduction operation in a dispatch). Since VectorDistribution
1167-
// doesn't have logic to set subgroup and thread layouts seperately, we
1167+
// doesn't have logic to set subgroup and thread layouts separately, we
11681168
// explicitly set the subgroup count for the first matmul as well,
11691169
// corresponding to what the second matmul dictates.
11701170

@@ -1624,7 +1624,7 @@ static LogicalResult setContractConfig(IREE::GPU::TargetAttr target,
16241624

16251625
// Send very skinny, {2-4}xNxK and Mx{2-4}xK, matmuls to the vector reduction
16261626
// pipeline, similar to matvec. Note: Because of reassociation in the vector
1627-
// reduction pipeline, this may lead to precission loss. If this ever becomes
1627+
// reduction pipeline, this may lead to precision loss. If this ever becomes
16281628
// an issue, we can hide this behind a flag.
16291629
if (llvm::all_equal({contractionDims->m.size(), contractionDims->n.size(),
16301630
contractionDims->k.size(), size_t{1}}) &&
@@ -2391,7 +2391,7 @@ static LogicalResult setTransposeConfig(mlir::FunctionOpInterface entryPoint,
23912391

23922392
// Workgroup size contains 8 warps. Configured with 8 threads on fastest
23932393
// moving dimension so each thread can execute a vectorized copy of 4
2394-
// contigious elements at a time from the 32 block.
2394+
// contiguous elements at a time from the 32 block.
23952395
std::array<int64_t, 3> workgroupSize = {8, 32, 1};
23962396

23972397
return setOpConfigAndEntryPointFnTranslation(
@@ -2470,7 +2470,7 @@ static LogicalResult setArgmaxUkernelConfig(
24702470
}
24712471

24722472
/// Decides the tiling and distribution parameters for one convolution
2473-
/// dimension. Returns true if we can succesfully deduce.
2473+
/// dimension. Returns true if we can successfully deduce.
24742474
///
24752475
/// - `inputDim` is the size of the dimension to be distributed.
24762476
/// - `residualThreads` is the remaining threads we can distribute.
@@ -2512,7 +2512,7 @@ static bool distributeToOneDim(const int64_t inputDim,
25122512

25132513
/// Decides the tiling and distribution parameters for two convolution window
25142514
/// dimensions to two workgroup dimensions as a square. Returns true if we can
2515-
/// succesfully deduce.
2515+
/// successfully deduce.
25162516
static bool distributeToSquare(const int64_t oh, const int64_t ow,
25172517
int64_t &residualThreads,
25182518
int64_t &residualTilingFactor,

compiler/src/iree/compiler/Codegen/LLVMGPU/TransformExtensions/LLVMGPUExtensionsOps.td

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -341,7 +341,7 @@ def VectorToMMAConversionOp : Op<Transform_Dialect, "iree.vector.vector_to_mma_c
341341
ReportTrackingListenerFailuresOpTrait]> {
342342
let description = [{
343343
This converts slices of operations containing vector.contract op into
344-
mma operations, targetting warp level tensorcore operations. If the vector
344+
mma operations, targeting warp level tensorcore operations. If the vector
345345
operations are bigger than the native mma size it will first split up those
346346
vector operations.
347347

compiler/src/iree/compiler/Codegen/SPIRV/KernelConfig.cpp

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -86,7 +86,7 @@ static bool fusedOpMayUseExtraSharedMemory(linalg::LinalgOp matmul) {
8686
//===----------------------------------------------------------------------===//
8787

8888
/// Decides the tiling and distribution parameters for one convolution
89-
/// dimension. Returns true if we can succesfully deduce.
89+
/// dimension. Returns true if we can successfully deduce.
9090
///
9191
/// - `inputDim` is the size of the dimension to be distributed.
9292
/// - `residualThreads` is the remaining threads we can distribute.
@@ -126,7 +126,7 @@ static bool tileConvOneDim(const int64_t inputDim, const bool isInnerMostDim,
126126

127127
/// Decides the tiling and distribution parameters for two convolution window
128128
/// dimensions to two workgroup dimensions as a square. Returns true if we can
129-
/// succesfully deduce.
129+
/// successfully deduce.
130130
static bool tileConvSquare(const int64_t oh, const int64_t ow,
131131
int64_t &residualThreads,
132132
int64_t &residualTilingFactor,

compiler/src/iree/compiler/Codegen/SPIRV/SPIRVVectorizeLoadStore.cpp

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -767,7 +767,7 @@ static Value predicateMaybeMaskedScalarTransfer(
767767
}
768768

769769
/// Scalarizes remaining vector transfer that couldn't be converted to
770-
/// vevtor load operations.
770+
/// vector load operations.
771771

772772
/// This is very specific to SPIR-V as pointer cannot be casted to vector type
773773
/// if any of the memory access is not vector.

0 commit comments

Comments
 (0)