|
| 1 | +/* |
| 2 | + * Copyright (c) Meta Platforms, Inc. and affiliates. |
| 3 | + * All rights reserved. |
| 4 | + * |
| 5 | + * This source code is licensed under the BSD-style license found in the |
| 6 | + * LICENSE file in the root directory of this source tree. |
| 7 | + */ |
| 8 | + |
| 9 | +#include <executorch/extension/llm/custom_ops/op_fast_hadamard_transform.h> |
| 10 | +#include <executorch/extension/llm/custom_ops/spinquant/test/fast_hadamard_transform_test_impl.h> |
| 11 | +#include <executorch/kernels/test/TestUtil.h> |
| 12 | +#include <executorch/runtime/core/exec_aten/testing_util/tensor_factory.h> |
| 13 | + |
| 14 | +#include <gtest/gtest.h> |
| 15 | + |
| 16 | +#include <cmath> |
| 17 | + |
| 18 | +using exec_aten::Tensor; |
| 19 | + |
| 20 | +using executorch::runtime::testing::fast_hadamard_transform_28N_with_transpose; |
| 21 | +using executorch::runtime::testing::random_floats; |
| 22 | +using executorch::runtime::testing::reference_fht_impl; |
| 23 | + |
| 24 | +namespace { |
| 25 | +Tensor& fast_hadamard_transform_nocontext(const Tensor& vec, Tensor& out) { |
| 26 | + exec_aten::RuntimeContext context; |
| 27 | + return torch::executor::native::fast_hadamard_transform_out( |
| 28 | + context, vec, out); |
| 29 | +} |
| 30 | +} // namespace |
| 31 | + |
| 32 | +TEST(OpFastHadamardTransformTest, EmptyInput) { |
| 33 | + torch::executor::testing::TensorFactory<exec_aten::ScalarType::Float> tfFloat; |
| 34 | + auto vec = tfFloat.zeros({0}); |
| 35 | + auto out = tfFloat.zeros({0}); |
| 36 | + auto result = fast_hadamard_transform_nocontext(vec, out); |
| 37 | + EXPECT_EQ(result.numel(), 0); |
| 38 | +} |
| 39 | + |
| 40 | +TEST(OpFastHadamardTransformTest, SingleElementInput) { |
| 41 | + torch::executor::testing::TensorFactory<exec_aten::ScalarType::Float> tfFloat; |
| 42 | + auto vec = tfFloat.ones({1}); |
| 43 | + auto out = tfFloat.zeros({1}); |
| 44 | + auto result = fast_hadamard_transform_nocontext(vec, out); |
| 45 | + EXPECT_EQ(result.numel(), 1); |
| 46 | + // FHT of a single element is a no-op. |
| 47 | + EXPECT_EQ(result.const_data_ptr<float>()[0], 1); |
| 48 | +} |
| 49 | + |
| 50 | +TEST(OpFastHadamardTransformTest, FourKInput) { |
| 51 | + torch::executor::testing::TensorFactory<exec_aten::ScalarType::Float> tfFloat; |
| 52 | + std::vector<float> data = random_floats(4096); |
| 53 | + auto vec = tfFloat.make({4096}, data); |
| 54 | + auto out = tfFloat.zeros({4096}); |
| 55 | + auto result = fast_hadamard_transform_nocontext(vec, out); |
| 56 | + |
| 57 | + std::vector<float> reference_result = data; |
| 58 | + reference_fht_impl(reference_result.data(), reference_result.size()); |
| 59 | + |
| 60 | + const float* const result_data = result.const_data_ptr<float>(); |
| 61 | + for (int ii = 0; ii < data.size(); ++ii) { |
| 62 | + EXPECT_FLOAT_EQ(result_data[ii], reference_result[ii]); |
| 63 | + } |
| 64 | +} |
| 65 | + |
| 66 | +TEST(OpFastHadamardTransformTest, MultipleRows) { |
| 67 | + torch::executor::testing::TensorFactory<exec_aten::ScalarType::Float> tfFloat; |
| 68 | + std::vector<float> data = random_floats(8 * 8 * 8); |
| 69 | + auto mat = tfFloat.make({8, 8, 8}, data); |
| 70 | + auto out = tfFloat.zeros({8, 8, 8}); |
| 71 | + |
| 72 | + auto result = fast_hadamard_transform_nocontext(mat, out); |
| 73 | + |
| 74 | + std::vector<float> reference_result = data; |
| 75 | + for (int ii = 0; ii < 8; ++ii) { |
| 76 | + for (int jj = 0; jj < 8; ++jj) { |
| 77 | + reference_fht_impl(&reference_result[ii * 64 + jj * 8], 8); |
| 78 | + } |
| 79 | + } |
| 80 | + |
| 81 | + const float* const result_data = result.const_data_ptr<float>(); |
| 82 | + for (int ii = 0; ii < data.size(); ++ii) { |
| 83 | + EXPECT_FLOAT_EQ(result_data[ii], reference_result[ii]); |
| 84 | + } |
| 85 | +} |
| 86 | + |
| 87 | +TEST(OpFastHadamardTransformTest, Basic28N) { |
| 88 | + torch::executor::testing::TensorFactory<exec_aten::ScalarType::Float> tfFloat; |
| 89 | + constexpr int kTestLogSize = 7; |
| 90 | + constexpr int kTestPowerOfTwoSize = 1 << kTestLogSize; |
| 91 | + constexpr int kTestTotalSize = kTestPowerOfTwoSize * 28; |
| 92 | + std::vector<float> data = random_floats(kTestTotalSize); |
| 93 | + auto vec = tfFloat.make({kTestTotalSize}, data); |
| 94 | + auto out = tfFloat.zeros({kTestTotalSize}); |
| 95 | + |
| 96 | + // The operator is supposed to autodetect 28 * 2**N size and handle |
| 97 | + // accordingly. |
| 98 | + auto result = fast_hadamard_transform_nocontext(vec, out); |
| 99 | + |
| 100 | + std::vector<float> reference_result = data; |
| 101 | + fast_hadamard_transform_28N_with_transpose( |
| 102 | + reference_result.data(), kTestLogSize); |
| 103 | + |
| 104 | + const float* const result_data = result.const_data_ptr<float>(); |
| 105 | + for (int ii = 0; ii < data.size(); ++ii) { |
| 106 | + EXPECT_FLOAT_EQ(result_data[ii], reference_result[ii]); |
| 107 | + } |
| 108 | +} |
| 109 | + |
| 110 | +TEST(OpFastHadamardTransformTest, InvalidSize) { |
| 111 | + torch::executor::testing::TensorFactory<exec_aten::ScalarType::Float> tfFloat; |
| 112 | + auto mat = tfFloat.zeros({3}); |
| 113 | + auto out = tfFloat.zeros({3}); |
| 114 | + |
| 115 | + exec_aten::RuntimeContext context; |
| 116 | + torch::executor::native::fast_hadamard_transform_out(context, mat, out); |
| 117 | + EXPECT_NE(context.failure_state(), executorch::runtime::Error::Ok); |
| 118 | +} |
0 commit comments