|
60 | 60 | @safetestset "rand 1" begin |
61 | 61 | using Test |
62 | 62 | using Distributions |
63 | | - using Random |
| 63 | + using StableRNGs |
64 | 64 | using SequentialSamplingModels |
65 | 65 | using Statistics |
66 | 66 | include("../KDE.jl") |
67 | 67 |
|
68 | | - Random.seed!(550) |
| 68 | + rng = StableRNG(584) |
69 | 69 |
|
70 | 70 | model = CDDM(; ν = [1.5, 1], η = [0.0, 0.0], σ = 1.0, α = 1.5, τ = 0.300) |
71 | 71 |
|
72 | | - data = rand(model, 100_000) |
| 72 | + data = rand(rng, model, 100_000) |
73 | 73 | approx_pdf = kernel(data[:, 1]) |
74 | 74 |
|
75 | 75 | x = range(-π, π, length = 100) |
|
85 | 85 | @safetestset "rand 2" begin |
86 | 86 | using Test |
87 | 87 | using Distributions |
88 | | - using Random |
| 88 | + using StableRNGs |
89 | 89 | using SequentialSamplingModels |
90 | 90 | using Statistics |
91 | 91 | include("../KDE.jl") |
92 | 92 |
|
93 | | - Random.seed!(56) |
| 93 | + rng = StableRNG(102) |
94 | 94 |
|
95 | 95 | model = CDDM(; ν = [1.5, -1], η = [0.0, 0.0], σ = 0.5, α = 2.5, τ = 0.400) |
96 | 96 |
|
97 | | - data = rand(model, 100_000) |
| 97 | + data = rand(rng, model, 100_000) |
98 | 98 | approx_pdf = kernel(data[:, 1]) |
99 | 99 |
|
100 | 100 | x = range(-π, π, length = 200) |
|
112 | 112 | @safetestset "pdf_rt 1" begin |
113 | 113 | using Test |
114 | 114 | using Distributions |
115 | | - using Random |
| 115 | + using StableRNGs |
116 | 116 | using SequentialSamplingModels |
117 | 117 | using SequentialSamplingModels: pdf_rt |
118 | 118 | using Statistics |
119 | 119 | include("../KDE.jl") |
120 | 120 |
|
121 | | - Random.seed!(1345) |
| 121 | + rng = StableRNG(588) |
122 | 122 |
|
123 | 123 | model = CDDM(; ν = [1.75, 1.0], η = [0.50, 0.50], σ = 0.50, α = 2.5, τ = 0.20) |
124 | 124 |
|
125 | 125 | rts = range(model.τ, 3.5, length = 200) |
126 | 126 | dens = map(rt -> pdf_rt(model, rt), rts) |
127 | | - data = rand(model, 100_000) |
| 127 | + data = rand(rng, model, 100_000) |
128 | 128 |
|
129 | 129 | approx_pdf = kernel(data[:, 2]) |
130 | 130 | true_dens = pdf(approx_pdf, rts) |
|
136 | 136 | @safetestset "pdf_rt 2" begin |
137 | 137 | using Test |
138 | 138 | using Distributions |
139 | | - using Random |
| 139 | + using StableRNGs |
140 | 140 | using SequentialSamplingModels |
141 | 141 | using SequentialSamplingModels: pdf_rt |
142 | 142 | using Statistics |
143 | 143 | include("../KDE.jl") |
144 | 144 |
|
145 | | - Random.seed!(6541) |
| 145 | + rng = StableRNG(112) |
146 | 146 |
|
147 | 147 | model = CDDM(; ν = [1.75, 2.0], η = [0.50, 0.50], σ = 0.50, α = 1.0, τ = 0.30) |
148 | 148 |
|
149 | 149 | rts = range(model.τ, 1.5, length = 200) |
150 | 150 | dens = map(rt -> pdf_rt(model, rt), rts) |
151 | | - data = rand(model, 100_000) |
| 151 | + data = rand(rng, model, 100_000) |
152 | 152 |
|
153 | 153 | approx_pdf = kernel(data[:, 2]) |
154 | 154 | true_dens = pdf(approx_pdf, rts) |
|
162 | 162 | @safetestset "pdf_angle 1" begin |
163 | 163 | using Test |
164 | 164 | using Distributions |
165 | | - using Random |
| 165 | + using StableRNGs |
166 | 166 | using SequentialSamplingModels |
167 | 167 | using SequentialSamplingModels: pdf_angle |
168 | 168 | using Statistics |
169 | 169 | include("../KDE.jl") |
170 | 170 |
|
171 | | - Random.seed!(4556) |
| 171 | + rng = StableRNG(478) |
172 | 172 |
|
173 | 173 | model = CDDM(; ν = [1.75, 1.0], η = [0.50, 0.50], σ = 0.50, α = 2.5, τ = 0.20) |
174 | 174 |
|
175 | 175 | θs = range(-π, π, length = 200) |
176 | 176 | dens = map(θ -> pdf_angle(model, θ), θs) |
177 | | - data = rand(model, 100_000) |
| 177 | + data = rand(rng, model, 100_000) |
178 | 178 |
|
179 | 179 | approx_pdf = kernel(data[:, 1]) |
180 | 180 | true_dens = pdf(approx_pdf, θs) |
|
186 | 186 | @safetestset "pdf_angle 2" begin |
187 | 187 | using Test |
188 | 188 | using Distributions |
189 | | - using Random |
| 189 | + using StableRNGs |
190 | 190 | using SequentialSamplingModels |
191 | 191 | using SequentialSamplingModels: pdf_angle |
192 | 192 | using Statistics |
193 | 193 | include("../KDE.jl") |
194 | 194 |
|
195 | | - Random.seed!(6541) |
| 195 | + rng = StableRNG(90) |
196 | 196 |
|
197 | 197 | model = CDDM(; ν = [1.75, 2.0], η = [0.50, 0.50], σ = 0.50, α = 1.0, τ = 0.30) |
198 | 198 |
|
199 | 199 | θs = range(-π, π, length = 200) |
200 | 200 | dens = map(θ -> pdf_angle(model, θ), θs) |
201 | | - data = rand(model, 100_000) |
| 201 | + data = rand(rng, model, 100_000) |
202 | 202 |
|
203 | 203 | approx_pdf = kernel(data[:, 1]) |
204 | 204 | true_dens = pdf(approx_pdf, θs) |
|
240 | 240 | using Test |
241 | 241 | using Distributions |
242 | 242 | using SequentialSamplingModels |
243 | | - using Random |
| 243 | + using StableRNGs |
244 | 244 |
|
245 | | - Random.seed!(584) |
| 245 | + rng = StableRNG(665) |
246 | 246 |
|
247 | 247 | sum_logpdf(model, data) = sum(logpdf(model, data)) |
248 | 248 |
|
249 | 249 | parms = (ν = [1.75, 1.0], η = [0.50, 0.50], σ = 1.0, α = 3.5, τ = 0.30) |
250 | 250 |
|
251 | 251 | model = CDDM(; parms...) |
252 | | - data = rand(model, 1_500) |
| 252 | + data = rand(rng, model, 2_000) |
253 | 253 |
|
254 | 254 | τs = range(parms.τ * 0.5, parms.τ, length = 50) |
255 | 255 | LLs = map(τ -> sum_logpdf(CDDM(; parms..., τ), data), τs) |
|
0 commit comments