Skip to content

Commit 7ec7132

Browse files
author
Jaan Altosaar
authored
Update README.md
1 parent b9378bb commit 7ec7132

File tree

1 file changed

+35
-0
lines changed

1 file changed

+35
-0
lines changed

README.md

Lines changed: 35 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -6,3 +6,38 @@ I recommend the PyTorch version.
66
Mean-field variational inference is used to fit the model to binarized MNIST handwritten digits images. An inference network (encoder) is used to amortize the inference and share parameters across datapoints. The likelihood is parameterized by a generative network (decoder).
77

88
Blog post: https://jaan.io/what-is-variational-autoencoder-vae-tutorial/
9+
10+
Example output with importance sampling for estimating the marginal likelihood on Hugo Larochelle's Binary MNIST dataset. Finaly marginal likelihood on the test set of `-97.10` nats.
11+
12+
```
13+
$ python train_variational_autoencoder_pytorch.py
14+
step: 0 train elbo: -558.69
15+
step: 0 valid elbo: -391.84 valid log p(x): -363.25
16+
step: 5000 train elbo: -116.09
17+
step: 5000 valid elbo: -112.57 valid log p(x): -107.01
18+
step: 10000 train elbo: -105.82
19+
step: 10000 valid elbo: -108.49 valid log p(x): -102.62
20+
step: 15000 train elbo: -106.78
21+
step: 15000 valid elbo: -106.97 valid log p(x): -100.97
22+
step: 20000 train elbo: -108.43
23+
step: 20000 valid elbo: -106.23 valid log p(x): -100.04
24+
step: 25000 train elbo: -99.68
25+
step: 25000 valid elbo: -104.89 valid log p(x): -98.83
26+
step: 30000 train elbo: -96.71
27+
step: 30000 valid elbo: -104.50 valid log p(x): -98.34
28+
step: 35000 train elbo: -98.64
29+
step: 35000 valid elbo: -104.05 valid log p(x): -97.87
30+
step: 40000 train elbo: -93.60
31+
step: 40000 valid elbo: -104.10 valid log p(x): -97.68
32+
step: 45000 train elbo: -96.45
33+
step: 45000 valid elbo: -104.58 valid log p(x): -97.76
34+
step: 50000 train elbo: -101.63
35+
step: 50000 valid elbo: -104.72 valid log p(x): -97.81
36+
step: 55000 train elbo: -106.78
37+
step: 55000 valid elbo: -105.14 valid log p(x): -98.06
38+
step: 60000 train elbo: -100.58
39+
step: 60000 valid elbo: -104.13 valid log p(x): -97.30
40+
step: 65000 train elbo: -96.19
41+
step: 65000 valid elbo: -104.46 valid log p(x): -97.43
42+
step: 65000 test elbo: -103.31 test log p(x): -97.10
43+
```

0 commit comments

Comments
 (0)