You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: README.md
+43-27Lines changed: 43 additions & 27 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -169,11 +169,53 @@ The `targets` parameter passed to the CAM method can then use `ClassifierOutputT
169
169
targets = [ClassifierOutputTarget(281)]
170
170
```
171
171
172
-
However more advanced cases, you might want another behaviour.
172
+
However for more advanced cases, you might want a different behaviour.
173
173
Check [here](https://github.com/jacobgil/pytorch-grad-cam/blob/master/pytorch_grad_cam/utils/model_targets.py) for more examples.
174
174
175
175
----------
176
176
177
+
# Tutorials
178
+
Here you can find detailed examples of how to use this for various custom use cases like object detection:
179
+
180
+
These point to the new documentation jupter-book for fast rendering.
181
+
The jupyter notebooks themselves can be found under the tutorials folder in the git repository.
182
+
183
+
-[Notebook tutorial: XAI Recipes for the HuggingFace 🤗 Image Classification Models](<https://jacobgil.github.io/pytorch-gradcam-book/HuggingFace.html>)
184
+
185
+
-[Notebook tutorial: Deep Feature Factorizations for better model explainability](<https://jacobgil.github.io/pytorch-gradcam-book/Deep%20Feature%20Factorizations.html>)
186
+
187
+
-[Notebook tutorial: Class Activation Maps for Object Detection with Faster-RCNN](<https://jacobgil.github.io/pytorch-gradcam-book/Class%20Activation%20Maps%20for%20Object%20Detection%20With%20Faster%20RCNN.html>)
188
+
189
+
-[Notebook tutorial: Class Activation Maps for YOLO5](<https://jacobgil.github.io/pytorch-gradcam-book/EigenCAM%20for%20YOLO5.html>)
190
+
191
+
-[Notebook tutorial: Class Activation Maps for Semantic Segmentation](<https://jacobgil.github.io/pytorch-gradcam-book/Class%20Activation%20Maps%20for%20Semantic%20Segmentation.html>)
192
+
193
+
-[Notebook tutorial: Adapting pixel attribution methods for embedding outputs from models](<https://jacobgil.github.io/pytorch-gradcam-book/Pixel%20Attribution%20for%20embeddings.html>)
194
+
195
+
-[Notebook tutorial: May the best explanation win. CAM Metrics and Tuning](<https://jacobgil.github.io/pytorch-gradcam-book/CAM%20Metrics%20And%20Tuning%20Tutorial.html>)
196
+
197
+
-[How it works with Vision/SwinT transformers](tutorials/vision_transformers.md)
198
+
199
+
200
+
----------
201
+
202
+
# Guided backpropagation
203
+
204
+
```python
205
+
from pytorch_grad_cam import GuidedBackpropReLUModel
Here you can find detailed examples of how to use this for various custom use cases like object detection:
207
-
208
-
These point to the new documentation jupter-book for fast rendering.
209
-
The jupyter notebooks themselves can be found under the tutorials folder in the git repository.
210
-
211
-
-[Notebook tutorial: XAI Recipes for the HuggingFace 🤗 Image Classification Models](<https://jacobgil.github.io/pytorch-gradcam-book/HuggingFace.html>)
212
-
213
-
-[Notebook tutorial: Deep Feature Factorizations for better model explainability](<https://jacobgil.github.io/pytorch-gradcam-book/Deep%20Feature%20Factorizations.html>)
214
-
215
-
-[Notebook tutorial: Class Activation Maps for Object Detection with Faster-RCNN](<https://jacobgil.github.io/pytorch-gradcam-book/Class%20Activation%20Maps%20for%20Object%20Detection%20With%20Faster%20RCNN.html>)
216
-
217
-
-[Notebook tutorial: Class Activation Maps for YOLO5](<https://jacobgil.github.io/pytorch-gradcam-book/EigenCAM%20for%20YOLO5.html>)
218
-
219
-
-[Notebook tutorial: Class Activation Maps for Semantic Segmentation](<https://jacobgil.github.io/pytorch-gradcam-book/Class%20Activation%20Maps%20for%20Semantic%20Segmentation.html>)
220
-
221
-
-[Notebook tutorial: Adapting pixel attribution methods for embedding outputs from models](<https://jacobgil.github.io/pytorch-gradcam-book/Pixel%20Attribution%20for%20embeddings.html>)
222
-
223
-
-[Notebook tutorial: May the best explanation win. CAM Metrics and Tuning](<https://jacobgil.github.io/pytorch-gradcam-book/CAM%20Metrics%20And%20Tuning%20Tutorial.html>)
224
-
225
-
-[How it works with Vision/SwinT transformers](tutorials/vision_transformers.md)
0 commit comments