Skip to content

Commit b888853

Browse files
mjloschjahn
authored andcommitted
remove all latex-ensuremath
1 parent 7fd30d4 commit b888853

File tree

1 file changed

+62
-62
lines changed

1 file changed

+62
-62
lines changed

doc/phys_pkgs/seaice.rst

Lines changed: 62 additions & 62 deletions
Original file line numberDiff line numberDiff line change
@@ -384,39 +384,39 @@ The momentum equation of the sea-ice model is
384384
.. math::
385385
386386
\label{eq:momseaice}
387-
m \frac{D{\ensuremath{\vec{\mathbf{u}}}}}{Dt} = -mf{\ensuremath{\vec{\mathbf{k}}}}\times{\ensuremath{\vec{\mathbf{u}}}} + {{\ensuremath{\vec{\mathbf{\mathbf{\tau}}}}}}_{air} +
388-
{{\ensuremath{\vec{\mathbf{\mathbf{\tau}}}}}}_{ocean} - m \nabla{\phi(0)} + {\ensuremath{\vec{\mathbf{F}}}},
387+
m \frac{D{{\vec{\mathbf{u}}}}}{Dt} = -mf{{\vec{\mathbf{k}}}}\times{{\vec{\mathbf{u}}}} + {{{\vec{\mathbf{\mathbf{\tau}}}}}}_{air} +
388+
{{{\vec{\mathbf{\mathbf{\tau}}}}}}_{ocean} - m \nabla{\phi(0)} + {{\vec{\mathbf{F}}}},
389389
390390
where :math:`m=m_{i}+m_{s}` is the ice and snow mass per unit area;
391-
:math:`{\ensuremath{\vec{\mathbf{u}}}}=u{\ensuremath{\vec{\mathbf{i}}}}+v{\ensuremath{\vec{\mathbf{j}}}}`
392-
is the ice velocity vector; :math:`{\ensuremath{\vec{\mathbf{i}}}}`,
393-
:math:`{\ensuremath{\vec{\mathbf{j}}}}`, and
394-
:math:`{\ensuremath{\vec{\mathbf{k}}}}` are unit vectors in the
391+
:math:`{{\vec{\mathbf{u}}}}=u{{\vec{\mathbf{i}}}}+v{{\vec{\mathbf{j}}}}`
392+
is the ice velocity vector; :math:`{{\vec{\mathbf{i}}}}`,
393+
:math:`{{\vec{\mathbf{j}}}}`, and
394+
:math:`{{\vec{\mathbf{k}}}}` are unit vectors in the
395395
:math:`x`, :math:`y`, and :math:`z` directions, respectively; :math:`f`
396396
is the Coriolis parameter;
397-
:math:`{{\ensuremath{\vec{\mathbf{\mathbf{\tau}}}}}}_{air}` and
398-
:math:`{{\ensuremath{\vec{\mathbf{\mathbf{\tau}}}}}}_{ocean}` are the
397+
:math:`{{{\vec{\mathbf{\mathbf{\tau}}}}}}_{air}` and
398+
:math:`{{{\vec{\mathbf{\mathbf{\tau}}}}}}_{ocean}` are the
399399
wind-ice and ocean-ice stresses, respectively; :math:`g` is the gravity
400400
accelation; :math:`\nabla\phi(0)` is the gradient (or tilt) of the sea
401401
surface height; :math:`\phi(0) = g\eta + p_{a}/\rho_{0} + mg/\rho_{0}`
402402
is the sea surface height potential in response to ocean dynamics
403403
(:math:`g\eta`), to atmospheric pressure loading
404404
(:math:`p_{a}/\rho_{0}`, where :math:`\rho_{0}` is a reference density)
405405
and a term due to snow and ice loading ; and
406-
:math:`{\ensuremath{\vec{\mathbf{F}}}}=\nabla\cdot\sigma` is the
406+
:math:`{{\vec{\mathbf{F}}}}=\nabla\cdot\sigma` is the
407407
divergence of the internal ice stress tensor :math:`\sigma_{ij}`.
408408
Advection of sea-ice momentum is neglected. The wind and ice-ocean
409409
stress terms are given by
410410

411411
.. math::
412412
413413
\begin{aligned}
414-
{{\ensuremath{\vec{\mathbf{\mathbf{\tau}}}}}}_{air} = & \rho_{air} C_{air} |{\ensuremath{\vec{\mathbf{U}}}}_{air} -{\ensuremath{\vec{\mathbf{u}}}}|
415-
R_{air} ({\ensuremath{\vec{\mathbf{U}}}}_{air} -{\ensuremath{\vec{\mathbf{u}}}}), \\
416-
{{\ensuremath{\vec{\mathbf{\mathbf{\tau}}}}}}_{ocean} = & \rho_{ocean}C_{ocean} |{\ensuremath{\vec{\mathbf{U}}}}_{ocean}-{\ensuremath{\vec{\mathbf{u}}}}|
417-
R_{ocean}({\ensuremath{\vec{\mathbf{U}}}}_{ocean}-{\ensuremath{\vec{\mathbf{u}}}}),\end{aligned}
414+
{{{\vec{\mathbf{\mathbf{\tau}}}}}}_{air} = & \rho_{air} C_{air} |{{\vec{\mathbf{U}}}}_{air} -{{\vec{\mathbf{u}}}}|
415+
R_{air} ({{\vec{\mathbf{U}}}}_{air} -{{\vec{\mathbf{u}}}}), \\
416+
{{{\vec{\mathbf{\mathbf{\tau}}}}}}_{ocean} = & \rho_{ocean}C_{ocean} |{{\vec{\mathbf{U}}}}_{ocean}-{{\vec{\mathbf{u}}}}|
417+
R_{ocean}({{\vec{\mathbf{U}}}}_{ocean}-{{\vec{\mathbf{u}}}}),\end{aligned}
418418
419-
where :math:`{\ensuremath{\vec{\mathbf{U}}}}_{air/ocean}` are the
419+
where :math:`{{\vec{\mathbf{U}}}}_{air/ocean}` are the
420420
surface winds of the atmosphere and surface currents of the ocean,
421421
respectively; :math:`C_{air/ocean}` are air and ocean drag coefficients;
422422
:math:`\rho_{air/ocean}` are reference densities; and
@@ -515,15 +515,15 @@ written as
515515
.. math::
516516
517517
\label{eq:matrixmom}
518-
{\ensuremath{\mathbf{A}}}({\ensuremath{\vec{\mathbf{x}}}})\,{\ensuremath{\vec{\mathbf{x}}}} = {\ensuremath{\vec{\mathbf{b}}}}({\ensuremath{\vec{\mathbf{x}}}}).
518+
{{\mathbf{A}}}({{\vec{\mathbf{x}}}})\,{{\vec{\mathbf{x}}}} = {{\vec{\mathbf{b}}}}({{\vec{\mathbf{x}}}}).
519519
520-
The solution vector :math:`{\ensuremath{\vec{\mathbf{x}}}}` consists of
520+
The solution vector :math:`{{\vec{\mathbf{x}}}}` consists of
521521
the two velocity components :math:`u` and :math:`v` that contain the
522522
velocity variables at all grid points and at one time level. The
523523
standard (and default) method for solving Eq.([eq:matrixmom]) in the sea
524524
ice component of the , as in many sea ice models, is an iterative Picard
525525
solver: in the :math:`k`-th iteration a linearized form
526-
:math:`{\ensuremath{\mathbf{A}}}({\ensuremath{\vec{\mathbf{x}}}}^{k-1})\,{\ensuremath{\vec{\mathbf{x}}}}^{k} = {\ensuremath{\vec{\mathbf{b}}}}({\ensuremath{\vec{\mathbf{x}}}}^{k-1})`
526+
:math:`{{\mathbf{A}}}({{\vec{\mathbf{x}}}}^{k-1})\,{{\vec{\mathbf{x}}}}^{k} = {{\vec{\mathbf{b}}}}({{\vec{\mathbf{x}}}}^{k-1})`
527527
is solved (in the case of the MITgcm it is a Line Successive (over)
528528
Relaxation (LSR) algorithm ). Picard solvers converge slowly, but
529529
generally the iteration is terminated after only a few non-linear steps
@@ -536,42 +536,42 @@ In order to overcome the poor convergence of the Picard-solver,
536536
introduced a Jacobian-free Newton-Krylov solver for the sea ice momentum
537537
equations. This solver is also implemented in the MITgcm . The Newton
538538
method transforms minimizing the residual
539-
:math:`{\ensuremath{\vec{\mathbf{F}}}}({\ensuremath{\vec{\mathbf{x}}}}) = {\ensuremath{\mathbf{A}}}({\ensuremath{\vec{\mathbf{x}}}})\,{\ensuremath{\vec{\mathbf{x}}}} -
540-
{\ensuremath{\vec{\mathbf{b}}}}({\ensuremath{\vec{\mathbf{x}}}})` to
539+
:math:`{{\vec{\mathbf{F}}}}({{\vec{\mathbf{x}}}}) = {{\mathbf{A}}}({{\vec{\mathbf{x}}}})\,{{\vec{\mathbf{x}}}} -
540+
{{\vec{\mathbf{b}}}}({{\vec{\mathbf{x}}}})` to
541541
finding the roots of a multivariate Taylor expansion of the residual
542542
:math:`\vec{\mathbf{F}}` around the previous (:math:`k-1`) estimate
543-
:math:`{\ensuremath{\vec{\mathbf{x}}}}^{k-1}`:
543+
:math:`{{\vec{\mathbf{x}}}}^{k-1}`:
544544

545545
.. math::
546546
547547
\label{eq:jfnktaylor}
548-
{\ensuremath{\vec{\mathbf{F}}}}({\ensuremath{\vec{\mathbf{x}}}}^{k-1}+\delta{\ensuremath{\vec{\mathbf{x}}}}^{k}) =
549-
{\ensuremath{\vec{\mathbf{F}}}}({\ensuremath{\vec{\mathbf{x}}}}^{k-1}) + {\ensuremath{\vec{\mathbf{F}}}}'({\ensuremath{\vec{\mathbf{x}}}}^{k-1})\,\delta{\ensuremath{\vec{\mathbf{x}}}}^{k}
548+
{{\vec{\mathbf{F}}}}({{\vec{\mathbf{x}}}}^{k-1}+\delta{{\vec{\mathbf{x}}}}^{k}) =
549+
{{\vec{\mathbf{F}}}}({{\vec{\mathbf{x}}}}^{k-1}) + {{\vec{\mathbf{F}}}}'({{\vec{\mathbf{x}}}}^{k-1})\,\delta{{\vec{\mathbf{x}}}}^{k}
550550
551551
with the Jacobian
552-
:math:`{\ensuremath{\mathbf{J}}}\equiv{\ensuremath{\vec{\mathbf{F}}}}'`.
552+
:math:`{{\mathbf{J}}}\equiv{{\vec{\mathbf{F}}}}'`.
553553
The root
554-
:math:`{\ensuremath{\vec{\mathbf{F}}}}({\ensuremath{\vec{\mathbf{x}}}}^{k-1}+\delta{\ensuremath{\vec{\mathbf{x}}}}^{k})=0`
554+
:math:`{{\vec{\mathbf{F}}}}({{\vec{\mathbf{x}}}}^{k-1}+\delta{{\vec{\mathbf{x}}}}^{k})=0`
555555
is found by solving
556556

557557
.. math::
558558
559559
\label{eq:jfnklin}
560-
{\ensuremath{\mathbf{J}}}({\ensuremath{\vec{\mathbf{x}}}}^{k-1})\,\delta{\ensuremath{\vec{\mathbf{x}}}}^{k} = -{\ensuremath{\vec{\mathbf{F}}}}({\ensuremath{\vec{\mathbf{x}}}}^{k-1})
560+
{{\mathbf{J}}}({{\vec{\mathbf{x}}}}^{k-1})\,\delta{{\vec{\mathbf{x}}}}^{k} = -{{\vec{\mathbf{F}}}}({{\vec{\mathbf{x}}}}^{k-1})
561561
562-
for :math:`\delta{\ensuremath{\vec{\mathbf{x}}}}^{k}`. The next
562+
for :math:`\delta{{\vec{\mathbf{x}}}}^{k}`. The next
563563
(:math:`k`-th) estimate is given by
564-
:math:`{\ensuremath{\vec{\mathbf{x}}}}^{k}={\ensuremath{\vec{\mathbf{x}}}}^{k-1}+a\,\delta{\ensuremath{\vec{\mathbf{x}}}}^{k}`.
564+
:math:`{{\vec{\mathbf{x}}}}^{k}={{\vec{\mathbf{x}}}}^{k-1}+a\,\delta{{\vec{\mathbf{x}}}}^{k}`.
565565
In order to avoid overshoots the factor :math:`a` is iteratively reduced
566566
in a line search
567567
(:math:`a=1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \ldots`) until
568-
:math:`\|{\ensuremath{\vec{\mathbf{F}}}}({\ensuremath{\vec{\mathbf{x}}}}^k)\| < \|{\ensuremath{\vec{\mathbf{F}}}}({\ensuremath{\vec{\mathbf{x}}}}^{k-1})\|`,
568+
:math:`\|{{\vec{\mathbf{F}}}}({{\vec{\mathbf{x}}}}^k)\| < \|{{\vec{\mathbf{F}}}}({{\vec{\mathbf{x}}}}^{k-1})\|`,
569569
where :math:`\|\cdot\|=\int\cdot\,dx^2` is the :math:`L_2`-norm. In
570570
practice, the line search is stopped at :math:`a=\frac{1}{8}`. The line
571571
search starts after :math:`\code{SEAICE\_JFNK\_lsIter}` non-linear
572572
Newton iterations (off by default).
573573

574-
Forming the Jacobian :math:`{\ensuremath{\mathbf{J}}}` explicitly is
574+
Forming the Jacobian :math:`{{\mathbf{J}}}` explicitly is
575575
often avoided as “too error prone and time consuming” . Instead, Krylov
576576
methods only require the action of :math:`\mathbf{J}` on an arbitrary
577577
vector :math:`\vec{\mathbf{w}}` and hence allow a matrix free algorithm
@@ -581,8 +581,8 @@ approximated by a first-order Taylor series expansion:
581581
.. math::
582582
583583
\label{eq:jfnkjacvecfd}
584-
{\ensuremath{\mathbf{J}}}({\ensuremath{\vec{\mathbf{x}}}}^{k-1})\,{\ensuremath{\vec{\mathbf{w}}}} \approx
585-
\frac{{\ensuremath{\vec{\mathbf{F}}}}({\ensuremath{\vec{\mathbf{x}}}}^{k-1}+\epsilon{\ensuremath{\vec{\mathbf{w}}}}) - {\ensuremath{\vec{\mathbf{F}}}}({\ensuremath{\vec{\mathbf{x}}}}^{k-1})}
584+
{{\mathbf{J}}}({{\vec{\mathbf{x}}}}^{k-1})\,{{\vec{\mathbf{w}}}} \approx
585+
\frac{{{\vec{\mathbf{F}}}}({{\vec{\mathbf{x}}}}^{k-1}+\epsilon{{\vec{\mathbf{w}}}}) - {{\vec{\mathbf{F}}}}({{\vec{\mathbf{x}}}}^{k-1})}
586586
{\epsilon}
587587
588588
or computed exactly with the help of automatic differentiation (AD)
@@ -591,45 +591,45 @@ tools. sets the step size :math:`\epsilon`.
591591
We use the Flexible Generalized Minimum RESidual method with right-hand
592592
side preconditioning to solve Eq.([eq:jfnklin]) iteratively starting
593593
from a first guess of
594-
:math:`\delta{\ensuremath{\vec{\mathbf{x}}}}^{k}_{0} = 0`. For the
594+
:math:`\delta{{\vec{\mathbf{x}}}}^{k}_{0} = 0`. For the
595595
preconditioning matrix :math:`\mathbf{P}` we choose a simplified form of
596596
the system matrix
597-
:math:`{\ensuremath{\mathbf{A}}}({\ensuremath{\vec{\mathbf{x}}}}^{k-1})`
598-
where :math:`{\ensuremath{\vec{\mathbf{x}}}}^{k-1}` is the estimate of
597+
:math:`{{\mathbf{A}}}({{\vec{\mathbf{x}}}}^{k-1})`
598+
where :math:`{{\vec{\mathbf{x}}}}^{k-1}` is the estimate of
599599
the previous Newton step :math:`k-1`. The transformed
600600
equation([eq:jfnklin]) becomes
601601

602602
.. math::
603603
604604
\label{eq:jfnklinpc}
605-
{\ensuremath{\mathbf{J}}}({\ensuremath{\vec{\mathbf{x}}}}^{k-1})\,{\ensuremath{\mathbf{P}}}^{-1}\delta{\ensuremath{\vec{\mathbf{z}}}} =
606-
-{\ensuremath{\vec{\mathbf{F}}}}({\ensuremath{\vec{\mathbf{x}}}}^{k-1}),
607-
\quad\text{with}\quad \delta{\ensuremath{\vec{\mathbf{z}}}}={\ensuremath{\mathbf{P}}}\delta{\ensuremath{\vec{\mathbf{x}}}}^{k}.
605+
{{\mathbf{J}}}({{\vec{\mathbf{x}}}}^{k-1})\,{{\mathbf{P}}}^{-1}\delta{{\vec{\mathbf{z}}}} =
606+
-{{\vec{\mathbf{F}}}}({{\vec{\mathbf{x}}}}^{k-1}),
607+
\quad\text{with}\quad \delta{{\vec{\mathbf{z}}}}={{\mathbf{P}}}\delta{{\vec{\mathbf{x}}}}^{k}.
608608
609609
The Krylov method iteratively improves the approximate solution
610610
to ([eq:jfnklinpc]) in subspace
611-
(:math:`{\ensuremath{\vec{\mathbf{r}}}}_0`,
612-
:math:`{\ensuremath{\mathbf{J}}}{\ensuremath{\mathbf{P}}}^{-1}{\ensuremath{\vec{\mathbf{r}}}}_0`,
613-
:math:`({\ensuremath{\mathbf{J}}}{\ensuremath{\mathbf{P}}}^{-1})^2{\ensuremath{\vec{\mathbf{r}}}}_0`,
611+
(:math:`{{\vec{\mathbf{r}}}}_0`,
612+
:math:`{{\mathbf{J}}}{{\mathbf{P}}}^{-1}{{\vec{\mathbf{r}}}}_0`,
613+
:math:`({{\mathbf{J}}}{{\mathbf{P}}}^{-1})^2{{\vec{\mathbf{r}}}}_0`,
614614
…,
615-
:math:`({\ensuremath{\mathbf{J}}}{\ensuremath{\mathbf{P}}}^{-1})^m{\ensuremath{\vec{\mathbf{r}}}}_0`)
615+
:math:`({{\mathbf{J}}}{{\mathbf{P}}}^{-1})^m{{\vec{\mathbf{r}}}}_0`)
616616
with increasing :math:`m`;
617-
:math:`{\ensuremath{\vec{\mathbf{r}}}}_0 = -{\ensuremath{\vec{\mathbf{F}}}}({\ensuremath{\vec{\mathbf{x}}}}^{k-1})
618-
-{\ensuremath{\mathbf{J}}}({\ensuremath{\vec{\mathbf{x}}}}^{k-1})\,\delta{\ensuremath{\vec{\mathbf{x}}}}^{k}_{0}`
617+
:math:`{{\vec{\mathbf{r}}}}_0 = -{{\vec{\mathbf{F}}}}({{\vec{\mathbf{x}}}}^{k-1})
618+
-{{\mathbf{J}}}({{\vec{\mathbf{x}}}}^{k-1})\,\delta{{\vec{\mathbf{x}}}}^{k}_{0}`
619619
is the initial residual of ([eq:jfnklin]);
620-
:math:`{\ensuremath{\vec{\mathbf{r}}}}_0=-{\ensuremath{\vec{\mathbf{F}}}}({\ensuremath{\vec{\mathbf{x}}}}^{k-1})`
620+
:math:`{{\vec{\mathbf{r}}}}_0=-{{\vec{\mathbf{F}}}}({{\vec{\mathbf{x}}}}^{k-1})`
621621
with the first guess
622-
:math:`\delta{\ensuremath{\vec{\mathbf{x}}}}^{k}_{0}=0`. We allow a
622+
:math:`\delta{{\vec{\mathbf{x}}}}^{k}_{0}=0`. We allow a
623623
Krylov-subspace of dimension \ :math:`m=50` and we do not use restarts.
624624
The preconditioning operation involves applying
625-
:math:`{\ensuremath{\mathbf{P}}}^{-1}` to the basis vectors
626-
:math:`{\ensuremath{\vec{\mathbf{v}}}}_0,
627-
{\ensuremath{\vec{\mathbf{v}}}}_1, {\ensuremath{\vec{\mathbf{v}}}}_2, \ldots, {\ensuremath{\vec{\mathbf{v}}}}_m`
625+
:math:`{{\mathbf{P}}}^{-1}` to the basis vectors
626+
:math:`{{\vec{\mathbf{v}}}}_0,
627+
{{\vec{\mathbf{v}}}}_1, {{\vec{\mathbf{v}}}}_2, \ldots, {{\vec{\mathbf{v}}}}_m`
628628
of the Krylov subspace. This operation is approximated by solving the
629629
linear system
630-
:math:`{\ensuremath{\mathbf{P}}}\,{\ensuremath{\vec{\mathbf{w}}}}={\ensuremath{\vec{\mathbf{v}}}}_i`.
631-
Because :math:`{\ensuremath{\mathbf{P}}} \approx
632-
{\ensuremath{\mathbf{A}}}({\ensuremath{\vec{\mathbf{x}}}}^{k-1})`, we
630+
:math:`{{\mathbf{P}}}\,{{\vec{\mathbf{w}}}}={{\vec{\mathbf{v}}}}_i`.
631+
Because :math:`{{\mathbf{P}}} \approx
632+
{{\mathbf{A}}}({{\vec{\mathbf{x}}}}^{k-1})`, we
633633
can use the LSR-algorithm already implemented in the Picard solver. Each
634634
preconditioning operation uses a fixed number of 10 LSR-iterations
635635
avoiding any termination criterion. More details and results can be
@@ -641,22 +641,22 @@ defining (see above) for better convergence. The non-linear Newton
641641
iteration is terminated when the :math:`L_2`-norm of the residual is
642642
reduced by :math:`\gamma_{\mathrm{nl}}` (runtime parameter will already
643643
lead to expensive simulations) with respect to the initial norm:
644-
:math:`\|{\ensuremath{\vec{\mathbf{F}}}}({\ensuremath{\vec{\mathbf{x}}}}^k)\| <
645-
\gamma_{\mathrm{nl}}\|{\ensuremath{\vec{\mathbf{F}}}}({\ensuremath{\vec{\mathbf{x}}}}^0)\|`.
644+
:math:`\|{{\vec{\mathbf{F}}}}({{\vec{\mathbf{x}}}}^k)\| <
645+
\gamma_{\mathrm{nl}}\|{{\vec{\mathbf{F}}}}({{\vec{\mathbf{x}}}}^0)\|`.
646646
Within a non-linear iteration, the linear FGMRES solver is terminated
647647
when the residual is smaller than
648-
:math:`\gamma_k\|{\ensuremath{\vec{\mathbf{F}}}}({\ensuremath{\vec{\mathbf{x}}}}^{k-1})\|`
648+
:math:`\gamma_k\|{{\vec{\mathbf{F}}}}({{\vec{\mathbf{x}}}}^{k-1})\|`
649649
where :math:`\gamma_k` is determined by
650650

651651
.. math::
652652
653653
\label{eq:jfnkgammalin}
654654
\gamma_k =
655655
\begin{cases}
656-
\gamma_0 &\text{for $\|{\ensuremath{\vec{\mathbf{F}}}}({\ensuremath{\vec{\mathbf{x}}}}^{k-1})\| \geq r$}, \\
656+
\gamma_0 &\text{for $\|{{\vec{\mathbf{F}}}}({{\vec{\mathbf{x}}}}^{k-1})\| \geq r$}, \\
657657
\max\left(\gamma_{\min},
658-
\frac{\|{\ensuremath{\vec{\mathbf{F}}}}({\ensuremath{\vec{\mathbf{x}}}}^{k-1})\|}{\|{\ensuremath{\vec{\mathbf{F}}}}({\ensuremath{\vec{\mathbf{x}}}}^{k-2})\|}\right)
659-
&\text{for $\|{\ensuremath{\vec{\mathbf{F}}}}({\ensuremath{\vec{\mathbf{x}}}}^{k-1})\| < r$,}
658+
\frac{\|{{\vec{\mathbf{F}}}}({{\vec{\mathbf{x}}}}^{k-1})\|}{\|{{\vec{\mathbf{F}}}}({{\vec{\mathbf{x}}}}^{k-2})\|}\right)
659+
&\text{for $\|{{\vec{\mathbf{F}}}}({{\vec{\mathbf{x}}}}^{k-1})\| < r$,}
660660
\end{cases}
661661
662662
so that the linear tolerance parameter :math:`\gamma_k` decreases with
@@ -665,7 +665,7 @@ This inexact Newton method is generally more robust and computationally
665665
more efficient than exact methods . Typical parameter choices are
666666
:math:`\gamma_0=\code{JFNKgamma\_lin\_max}=0.99`,
667667
:math:`\gamma_{\min}=\code{JFNKgamma\_lin\_min}=0.1`, and :math:`r =
668-
\code{JFNKres\_tFac}\times\|{\ensuremath{\vec{\mathbf{F}}}}({\ensuremath{\vec{\mathbf{x}}}}^{0})\|`
668+
\code{JFNKres\_tFac}\times\|{{\vec{\mathbf{F}}}}({{\vec{\mathbf{x}}}}^{0})\|`
669669
with :math:`\code{JFNKres\_tFac} = \frac{1}{2}`. We recommend a maximum
670670
number of non-linear iterations :math:`\code{SEAICEnewtonIterMax} = 100`
671671
and a maximum number of Krylov iterations
@@ -849,17 +849,17 @@ Ice-Ocean stress [sec:pkg:seaice:iceoceanstress]
849849

850850
|  
851851
| Moving sea ice exerts a stress on the ocean which is the opposite of
852-
the stress :math:`{{\ensuremath{\vec{\mathbf{\mathbf{\tau}}}}}}_{ocean}`
852+
the stress :math:`{{{\vec{\mathbf{\mathbf{\tau}}}}}}_{ocean}`
853853
in Eq. [eq:momseaice]. This stess is applied directly to the surface
854854
layer of the ocean model. An alternative ocean stress formulation is
855855
given by . Rather than applying
856-
:math:`{{\ensuremath{\vec{\mathbf{\mathbf{\tau}}}}}}_{ocean}` directly,
856+
:math:`{{{\vec{\mathbf{\mathbf{\tau}}}}}}_{ocean}` directly,
857857
the stress is derived from integrating over the ice thickness to the
858858
bottom of the oceanic surface layer. In the resulting equation for the
859859
*combined* ocean-ice momentum, the interfacial stress cancels and the
860860
total stress appears as the sum of windstress and divergence of internal
861861
ice stresses:
862-
:math:`\delta(z) ({{\ensuremath{\vec{\mathbf{\mathbf{\tau}}}}}}_{air} + {\ensuremath{\vec{\mathbf{F}}}})/\rho_0`,
862+
:math:`\delta(z) ({{{\vec{\mathbf{\mathbf{\tau}}}}}}_{air} + {{\vec{\mathbf{F}}}})/\rho_0`,
863863
. The disadvantage of this formulation is that now the velocity in the
864864
surface layer of the ocean that is used to advect tracers, is really an
865865
average over the ocean surface velocity and the ice velocity leading to
@@ -1118,7 +1118,7 @@ concentration :math:`c` and effective snow thickness
11181118
.. math::
11191119
11201120
\label{eq:advection}
1121-
\frac{\partial{X}}{\partial{t}} = - \nabla\cdot\left({\ensuremath{\vec{\mathbf{u}}}}\,X\right) +
1121+
\frac{\partial{X}}{\partial{t}} = - \nabla\cdot\left({{\vec{\mathbf{u}}}}\,X\right) +
11221122
\Gamma_{X} + D_{X}
11231123
11241124
where :math:`\Gamma_X` are the thermodynamic source terms and

0 commit comments

Comments
 (0)