Skip to content

Commit 2bcad3b

Browse files
committed
refactor: sharpen sub-module parameterisation
1 parent 72f7c78 commit 2bcad3b

File tree

1 file changed

+7
-7
lines changed

1 file changed

+7
-7
lines changed

src/Function/Consequences.agda

Lines changed: 7 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -130,21 +130,21 @@ module Section (≈₂ : Rel B ℓ₂) (surj : Surjective {A = A} ≈₁ ≈₂
130130
strictlySurjective : StrictlySurjective ≈₂ f
131131
strictlySurjective = surjective⇒strictlySurjective ≈₂ refl surj
132132

133-
strictInverseˡ : StrictlyInverseˡ ≈₂ f section
134-
strictInverseˡ _ = inverseˡ refl
133+
strictlyInverseˡ : StrictlyInverseˡ ≈₂ f section
134+
strictlyInverseˡ _ = inverseˡ refl
135+
136+
injective : Symmetric ≈₂ Transitive ≈₂ Injective ≈₂ ≈₁ section
137+
injective sym trans = trans (sym (strictlyInverseˡ _)) ∘ inverseˡ
135138

136139
module _ (inj : Injective ≈₁ ≈₂ f) (refl : Reflexive ≈₁) where
137140

138-
private f∘section≡id = strictInverseˡ refl
141+
private f∘section≡id = strictlyInverseˡ refl
139142

140143
cong : Symmetric ≈₂ Transitive ≈₂ Congruent ≈₂ ≈₁ section
141144
cong sym trans = inj ∘ trans (f∘section≡id _) ∘ sym ∘ trans (f∘section≡id _) ∘ sym
142145

143146
surjective : Transitive ≈₂ Surjective ≈₂ ≈₁ section
144147
surjective trans x = f x , inj ∘ trans (f∘section≡id _)
145148

146-
injective : Symmetric ≈₂ Transitive ≈₂ Injective ≈₂ ≈₁ section
147-
injective sym trans = trans (sym (f∘section≡id _)) ∘ inverseˡ
148-
149149
bijective : Symmetric ≈₂ Transitive ≈₂ Bijective ≈₂ ≈₁ section
150-
bijective sym trans = injective sym trans , surjective trans
150+
bijective sym trans = injective refl sym trans , surjective trans

0 commit comments

Comments
 (0)