File tree Expand file tree Collapse file tree 1 file changed +7
-7
lines changed Expand file tree Collapse file tree 1 file changed +7
-7
lines changed Original file line number Diff line number Diff line change @@ -130,21 +130,21 @@ module Section (≈₂ : Rel B ℓ₂) (surj : Surjective {A = A} ≈₁ ≈₂
130
130
strictlySurjective : StrictlySurjective ≈₂ f
131
131
strictlySurjective = surjective⇒strictlySurjective ≈₂ refl surj
132
132
133
- strictInverseˡ : StrictlyInverseˡ ≈₂ f section
134
- strictInverseˡ _ = inverseˡ refl
133
+ strictlyInverseˡ : StrictlyInverseˡ ≈₂ f section
134
+ strictlyInverseˡ _ = inverseˡ refl
135
+
136
+ injective : Symmetric ≈₂ → Transitive ≈₂ → Injective ≈₂ ≈₁ section
137
+ injective sym trans = trans (sym (strictlyInverseˡ _)) ∘ inverseˡ
135
138
136
139
module _ (inj : Injective ≈₁ ≈₂ f) (refl : Reflexive ≈₁) where
137
140
138
- private f∘section≡id = strictInverseˡ refl
141
+ private f∘section≡id = strictlyInverseˡ refl
139
142
140
143
cong : Symmetric ≈₂ → Transitive ≈₂ → Congruent ≈₂ ≈₁ section
141
144
cong sym trans = inj ∘ trans (f∘section≡id _) ∘ sym ∘ trans (f∘section≡id _) ∘ sym
142
145
143
146
surjective : Transitive ≈₂ → Surjective ≈₂ ≈₁ section
144
147
surjective trans x = f x , inj ∘ trans (f∘section≡id _)
145
148
146
- injective : Symmetric ≈₂ → Transitive ≈₂ → Injective ≈₂ ≈₁ section
147
- injective sym trans = trans (sym (f∘section≡id _)) ∘ inverseˡ
148
-
149
149
bijective : Symmetric ≈₂ → Transitive ≈₂ → Bijective ≈₂ ≈₁ section
150
- bijective sym trans = injective sym trans , surjective trans
150
+ bijective sym trans = injective refl sym trans , surjective trans
You can’t perform that action at this time.
0 commit comments