Skip to content

Commit 3e15e99

Browse files
committed
fix: use of rectified lemma names
1 parent 9d1bd5e commit 3e15e99

File tree

2 files changed

+11
-11
lines changed

2 files changed

+11
-11
lines changed

src/Data/Product/Function/Dependent/Propositional.agda

Lines changed: 7 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -194,19 +194,19 @@ module _ where
194194
to′ = map (to I↠J) (to A↠B)
195195

196196
backcast : {i} B i B (to I↠J (section I↠J i))
197-
backcast = ≡.subst B (≡.sym (section-strictInverseˡ I↠J _))
197+
backcast = ≡.subst B (≡.sym (strictlyInverseˡ I↠J _))
198198

199199
section′ : Σ J B Σ I A
200200
section′ = map (section I↠J) (section A↠B ∘ backcast)
201201

202202
strictlySurjective′ : StrictlySurjective _≡_ to′
203203
strictlySurjective′ (x , y) = section′ (x , y) , Σ-≡,≡→≡
204-
( section-strictInverseˡ I↠J x
204+
( strictlyInverseˡ I↠J x
205205
, (begin
206-
≡.subst B (section-strictInverseˡ I↠J x) (to A↠B (section A↠B (backcast y)))
207-
≡⟨ ≡.cong (≡.subst B _) (section-strictInverseˡ A↠B _) ⟩
208-
≡.subst B (section-strictInverseˡ I↠J x) (backcast y)
209-
≡⟨ ≡.subst-subst-sym (section-strictInverseˡ I↠J x) ⟩
206+
≡.subst B (strictlyInverseˡ I↠J x) (to A↠B (section A↠B (backcast y)))
207+
≡⟨ ≡.cong (≡.subst B _) (strictlyInverseˡ A↠B _) ⟩
208+
≡.subst B (strictlyInverseˡ I↠J x) (backcast y)
209+
≡⟨ ≡.subst-subst-sym (strictlyInverseˡ I↠J x) ⟩
210210
y
211211
∎)
212212
) where open ≡.≡-Reasoning
@@ -254,7 +254,7 @@ module _ where
254254
Σ-↔ {I = I} {J = J} {A = A} {B = B} I↔J A↔B = mk↔ₛ′
255255
(Surjection.to surjection′)
256256
(Surjection.section surjection′)
257-
(Surjection.section-strictInverseˡ surjection′)
257+
(Surjection.strictlyInverseˡ surjection′)
258258
left-inverse-of
259259
where
260260
open ≡.≡-Reasoning

src/Data/Product/Function/Dependent/Setoid.agda

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -122,8 +122,8 @@ module _ where
122122

123123
B-from : {y} Func (B atₛ y) (A atₛ (ItoJ.section y))
124124
B-from = record
125-
{ to = from A⇔B ∘ cast B (ItoJ.section-strictInverseˡ _)
126-
; cong = from-cong A⇔B ∘ cast-cong B (ItoJ.section-strictInverseˡ _)
125+
{ to = from A⇔B ∘ cast B (ItoJ.strictlyInverseˡ _)
126+
; cong = from-cong A⇔B ∘ cast-cong B (ItoJ.strictlyInverseˡ _)
127127
}
128128

129129
------------------------------------------------------------------------
@@ -172,11 +172,11 @@ module _ where
172172
func = function (Surjection.function I↠J) (Surjection.function A↠B)
173173

174174
section′ : Carrier (J ×ₛ B) Carrier (I ×ₛ A)
175-
section′ (j , y) = section I↠J j , section A↠B (cast B (section-strictInverseˡ I↠J _) y)
175+
section′ (j , y) = section I↠J j , section A↠B (cast B (strictlyInverseˡ I↠J _) y)
176176

177177
strictlySurj : StrictlySurjective (Func.Eq₂._≈_ func) (Func.to func)
178178
strictlySurj (j , y) = section′ (j , y) ,
179-
section-strictInverseˡ I↠J j , IndexedSetoid.trans B (section-strictInverseˡ A↠B _) (cast-eq B (section-strictInverseˡ I↠J j))
179+
strictlyInverseˡ I↠J j , IndexedSetoid.trans B (strictlyInverseˡ A↠B _) (cast-eq B (strictlyInverseˡ I↠J j))
180180

181181
surj : Surjective (Func.Eq₁._≈_ func) (Func.Eq₂._≈_ func) (Func.to func)
182182
surj = strictlySurjective⇒surjective (I ×ₛ A) (J ×ₛ B) (Func.cong func) strictlySurj

0 commit comments

Comments
 (0)