File tree Expand file tree Collapse file tree 2 files changed +26
-0
lines changed Expand file tree Collapse file tree 2 files changed +26
-0
lines changed Original file line number Diff line number Diff line change @@ -322,6 +322,11 @@ Additions to existing modules
322
322
``` agda
323
323
m≤n⇒m≤n*o : ∀ o .{{_ : NonZero o}} → m ≤ n → m ≤ n * o
324
324
m≤n⇒m≤o*n : ∀ o .{{_ : NonZero o}} → m ≤ n → m ≤ o * n
325
+ <‴-irrefl : Irreflexive _≡_ _<‴_
326
+ ≤‴-irrelevant : Irrelevant {A = ℕ} _≤‴_
327
+ <‴-irrelevant : Irrelevant {A = ℕ} _<‴_
328
+ >‴-irrelevant : Irrelevant {A = ℕ} _>‴_
329
+ ≥‴-irrelevant : Irrelevant {A = ℕ} _≥‴_
325
330
```
326
331
327
332
adjunction between ` suc ` and ` pred `
Original file line number Diff line number Diff line change @@ -2237,6 +2237,27 @@ _>‴?_ = flip _<‴?_
2237
2237
≤‴⇒≤ : _≤‴_ ⇒ _≤_
2238
2238
≤‴⇒≤ = ≤″⇒≤ ∘ ≤‴⇒≤″
2239
2239
2240
+ <‴-irrefl : Irreflexive _≡_ _<‴_
2241
+ <‴-irrefl eq = <-irrefl eq ∘ ≤‴⇒≤
2242
+
2243
+ ≤‴-irrelevant : Irrelevant {A = ℕ} _≤‴_
2244
+ ≤‴-irrelevant ≤‴-refl = lemma refl
2245
+ where
2246
+ lemma : ∀ {m n} → (e : m ≡ n) → (q : m ≤‴ n) → subst (m ≤‴_) e ≤‴-refl ≡ q
2247
+ lemma {m} e ≤‴-refl = cong (λ e → subst (m ≤‴_) e ≤‴-refl) $ ≡-irrelevant e refl
2248
+ lemma refl (≤‴-step m<m) with () ← <‴-irrefl refl m<m
2249
+ ≤‴-irrelevant (≤‴-step m<m) ≤‴-refl with () ← <‴-irrefl refl m<m
2250
+ ≤‴-irrelevant (≤‴-step p) (≤‴-step q) = cong ≤‴-step $ ≤‴-irrelevant p q
2251
+
2252
+ <‴-irrelevant : Irrelevant {A = ℕ} _<‴_
2253
+ <‴-irrelevant = ≤‴-irrelevant
2254
+
2255
+ >‴-irrelevant : Irrelevant {A = ℕ} _>‴_
2256
+ >‴-irrelevant = ≤‴-irrelevant
2257
+
2258
+ ≥‴-irrelevant : Irrelevant {A = ℕ} _≥‴_
2259
+ ≥‴-irrelevant = ≤‴-irrelevant
2260
+
2240
2261
------------------------------------------------------------------------
2241
2262
-- Other properties
2242
2263
------------------------------------------------------------------------
You can’t perform that action at this time.
0 commit comments