Skip to content

Commit d8ec317

Browse files
committed
fix: type, and definition, of strictlyInverseʳ
1 parent 79afa5b commit d8ec317

File tree

3 files changed

+7
-7
lines changed

3 files changed

+7
-7
lines changed

CHANGELOG.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -123,7 +123,7 @@ Additions to existing modules
123123
inverseˡ : Inverseˡ _≈₁_ _≈₂_ to section
124124
strictlyInverseˡ : StrictlyInverseˡ _≈₂_ to section
125125
inverseʳ : Inverseʳ _≈₁_ _≈₂_ to section
126-
strictlyInverseʳ : StrictlyInverseʳ _≈₂_ section to
126+
strictlyInverseʳ : StrictlyInverseʳ _≈₁_ to section
127127
```
128128

129129
* In `Function.Bundles.LeftInverse`:
@@ -162,7 +162,7 @@ Additions to existing modules
162162
inverseˡ : Inverseˡ _≈₁_ _≈₂_ f section
163163
strictlyInverseˡ : StrictlyInverseˡ _≈₂_ f section
164164
inverseʳ : Inverseʳ _≈₁_ _≈₂_ f section
165-
strictlyInverseʳ : StrictlyInverseʳ _≈₂_ section f
165+
strictlyInverseʳ : StrictlyInverseʳ _≈₁_ f section
166166
```
167167

168168
* In `Function.Structures.IsSurjection`:

src/Function/Consequences.agda

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -131,9 +131,6 @@ module Section (≈₂ : Rel B ℓ₂) (surj : Surjective {A = A} ≈₁ ≈₂
131131
strictlyInverseˡ : StrictlyInverseˡ ≈₂ f section
132132
strictlyInverseˡ _ = inverseˡ refl
133133

134-
strictlyInverseʳ : StrictlyInverseʳ ≈₂ section f
135-
strictlyInverseʳ = strictlyInverseˡ
136-
137134
injective : Symmetric ≈₂ Transitive ≈₂ Injective ≈₂ ≈₁ section
138135
injective sym trans = trans (sym (strictlyInverseˡ _)) ∘ inverseˡ
139136

@@ -147,6 +144,9 @@ module Section (≈₂ : Rel B ℓ₂) (surj : Surjective {A = A} ≈₁ ≈₂
147144
inverseʳ : Transitive ≈₂ Inverseʳ ≈₁ ≈₂ f section
148145
inverseʳ trans = inj ∘ trans (f∘section≡id _)
149146

147+
strictlyInverseʳ : Reflexive ≈₂ Transitive ≈₂ StrictlyInverseʳ ≈₁ f section
148+
strictlyInverseʳ refl trans _ = inverseʳ trans refl
149+
150150
surjective : Transitive ≈₂ Surjective ≈₂ ≈₁ section
151151
surjective trans x = f x , inverseʳ trans
152152

src/Function/Structures.agda

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -102,8 +102,8 @@ record IsBijection (f : A → B) : Set (a ⊔ b ⊔ ℓ₁ ⊔ ℓ₂) where
102102
inverseʳ : Inverseʳ _≈₁_ _≈₂_ f section
103103
inverseʳ = S.inverseʳ injective Eq₁.refl Eq₂.trans
104104

105-
strictlyInverseʳ : StrictlyInverseʳ _≈₂_ section f
106-
strictlyInverseʳ = S.strictlyInverseʳ Eq.refl
105+
strictlyInverseʳ : StrictlyInverseʳ _≈₁_ f section
106+
strictlyInverseʳ _ = inverseʳ Eq.refl
107107

108108

109109
------------------------------------------------------------------------

0 commit comments

Comments
 (0)