@@ -22,7 +22,7 @@ open import Level using (Level)
22
22
open import Relation.Binary.Core using (Rel)
23
23
open import Relation.Binary.Definitions using (Reflexive; Symmetric; Transitive)
24
24
open import Relation.Binary.Bundles using (Setoid)
25
- open import Relation.Binary.PropositionalEquality.Core using (_≡_; cong )
25
+ open import Relation.Binary.PropositionalEquality.Core using (_≡_)
26
26
open import Relation.Binary.PropositionalEquality.Properties using (setoid)
27
27
28
28
private
@@ -47,8 +47,8 @@ module _ (≈₁ : Rel A ℓ₁) (≈₂ : Rel B ℓ₂) {f : A → B} {f⁻¹ :
47
47
------------------------------------------------------------------------
48
48
-- Structures
49
49
50
- module _ {≈₁ : Rel A ℓ₁} {≈₂ : Rel B ℓ₂}
51
- {f : A → B} (isBij : IsBijection ≈₁ ≈₂ f)
50
+ module _ {≈₁ : Rel A ℓ₁} {≈₂ : Rel B ℓ₂} {f : A → B}
51
+ (isBij : IsBijection ≈₁ ≈₂ f)
52
52
where
53
53
54
54
private module B = IsBijection isBij
@@ -105,11 +105,9 @@ module _ {R : Setoid a ℓ₁} {S : Setoid b ℓ₂} (bij : Bijection R S) where
105
105
-- We can always flip a bijection WITHOUT knowing if the witness produced
106
106
-- by the surjection proof respects the equality on the codomain.
107
107
bijectionWithoutCongruence : Bijection S R
108
- bijectionWithoutCongruence = record
109
- { to = B.section
110
- ; cong = S.cong B.injective B.Eq₁.refl B.Eq₂.sym B.Eq₂.trans
111
- ; bijective = S.bijective B.injective B.Eq₁.refl B.Eq₂.sym B.Eq₂.trans
112
- } where module B = Bijection bij ; module S = Section (Setoid._≈_ S) B.surjective
108
+ bijectionWithoutCongruence = record {
109
+ IsBijection (isBijectionWithoutCongruence B.isBijection)
110
+ } where module B = Bijection bij
113
111
114
112
module _ {R : Setoid a ℓ₁} {S : Setoid b ℓ₂} where
115
113
@@ -223,7 +221,7 @@ module _ {≈₁ : Rel A ℓ₁} {≈₂ : Rel B ℓ₂} {f : A → B}
223
221
224
222
bijective : Symmetric ≈₂ → Transitive ≈₂ →
225
223
Congruent ≈₁ ≈₂ f → Bijective ≈₂ ≈₁ S.section
226
- bijective sym trans _ = S. injective refl sym trans , surjective trans
224
+ bijective sym trans cong = injective sym trans cong , surjective trans
227
225
{-# WARNING_ON_USAGE injective
228
226
"Warning: injective was deprecated in v2.3.
229
227
Please use Function.Consequences.Section.injective instead, with a sharper type."
@@ -237,8 +235,8 @@ Please use Function.Consequences.Section.surjective instead."
237
235
Please use Function.Consequences.Section.bijective instead, with a sharper type."
238
236
#-}
239
237
240
- module _ {≈₁ : Rel A ℓ₁} {≈₂ : Rel B ℓ₂}
241
- {f : A → B} (isBij : IsBijection ≈₁ ≈₂ f)
238
+ module _ {≈₁ : Rel A ℓ₁} {≈₂ : Rel B ℓ₂} {f : A → B}
239
+ (isBij : IsBijection ≈₁ ≈₂ f)
242
240
where
243
241
private module B = IsBijection isBij
244
242
isBijection : Congruent ≈₂ ≈₁ B.section → IsBijection ≈₂ ≈₁ B.section
0 commit comments