@@ -711,6 +711,9 @@ def get_vocab_base_pre(self, tokenizer) -> str:
711711 if chkhsh == "1994ffd01900cfb37395608534236ecd63f2bd5995d6cb1004dda1af50240f15" :
712712 # ref: https://huggingface.co/trillionlabs/Trillion-7B-preview
713713 res = "trillion"
714+ if chkhsh == "96a5f08be6259352137b512d4157e333e21df7edd3fcd152990608735a65b224" :
715+ # ref: https://huggingface.co/inclusionAI/Ling-lite
716+ res = "bailingmoe"
714717
715718 if res is None :
716719 logger .warning ("\n " )
@@ -5133,6 +5136,108 @@ def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iter
51335136 return super ().modify_tensors (data_torch , name , bid )
51345137
51355138
5139+ @Model .register ("BailingMoeForCausalLM" )
5140+ class BailingMoeModel (Model ):
5141+ model_arch = gguf .MODEL_ARCH .BAILINGMOE
5142+
5143+ def set_vocab (self ):
5144+ self ._set_vocab_gpt2 ()
5145+
5146+ def set_gguf_parameters (self ):
5147+ super ().set_gguf_parameters ()
5148+ hparams = self .hparams
5149+ if "head_dim" in hparams :
5150+ rope_dim = hparams ["head_dim" ]
5151+ else :
5152+ rope_dim = hparams ["hidden_size" ] // hparams ["num_attention_heads" ]
5153+
5154+ self .gguf_writer .add_rope_dimension_count (rope_dim )
5155+ self .gguf_writer .add_rope_scaling_type (gguf .RopeScalingType .NONE )
5156+ self .gguf_writer .add_leading_dense_block_count (hparams ["first_k_dense_replace" ])
5157+ self .gguf_writer .add_vocab_size (hparams ["vocab_size" ])
5158+ self .gguf_writer .add_expert_feed_forward_length (hparams ["moe_intermediate_size" ])
5159+ self .gguf_writer .add_expert_weights_scale (1.0 )
5160+ self .gguf_writer .add_expert_count (hparams ["num_experts" ])
5161+ self .gguf_writer .add_expert_shared_count (hparams ["num_shared_experts" ])
5162+ self .gguf_writer .add_expert_weights_norm (hparams ["norm_topk_prob" ])
5163+
5164+ _experts : list [dict [str , Tensor ]] | None = None
5165+
5166+ @staticmethod
5167+ def permute (weights : Tensor , n_head : int , n_head_kv : int | None ):
5168+ if n_head_kv is not None and n_head != n_head_kv :
5169+ n_head = n_head_kv
5170+ return (weights .reshape (n_head , 2 , weights .shape [0 ] // n_head // 2 , * weights .shape [1 :])
5171+ .swapaxes (1 , 2 )
5172+ .reshape (weights .shape ))
5173+
5174+ def modify_tensors (self , data_torch : Tensor , name : str , bid : int | None ) -> Iterable [tuple [str , Tensor ]]:
5175+ n_head = self .hparams ["num_attention_heads" ]
5176+ n_kv_head = self .hparams .get ("num_key_value_heads" )
5177+ n_embd = self .hparams ["hidden_size" ]
5178+ head_dim = self .hparams .get ("head_dim" , n_embd // n_head )
5179+
5180+ output_name = self .format_tensor_name (gguf .MODEL_TENSOR .OUTPUT )
5181+
5182+ if name .endswith ("attention.dense.weight" ):
5183+ return [(self .format_tensor_name (gguf .MODEL_TENSOR .ATTN_OUT , bid ), data_torch )]
5184+ elif name .endswith ("query_key_value.weight" ):
5185+ q , k , v = data_torch .split ([n_head * head_dim , n_kv_head * head_dim , n_kv_head * head_dim ], dim = - 2 )
5186+
5187+ return [
5188+ (self .format_tensor_name (gguf .MODEL_TENSOR .ATTN_Q , bid ), BailingMoeModel .permute (q , n_head , n_head )),
5189+ (self .format_tensor_name (gguf .MODEL_TENSOR .ATTN_K , bid ), BailingMoeModel .permute (k , n_head , n_kv_head )),
5190+ (self .format_tensor_name (gguf .MODEL_TENSOR .ATTN_V , bid ), v )
5191+ ]
5192+ elif name .find ("mlp.experts" ) != - 1 :
5193+ n_experts = self .hparams ["num_experts" ]
5194+ assert bid is not None
5195+
5196+ tensors : list [tuple [str , Tensor ]] = []
5197+
5198+ if self ._experts is None :
5199+ self ._experts = [{} for _ in range (self .block_count )]
5200+
5201+ self ._experts [bid ][name ] = data_torch
5202+
5203+ if len (self ._experts [bid ]) >= n_experts * 3 :
5204+ # merge the experts into a single 3d tensor
5205+ for w_name in ["down_proj" , "gate_proj" , "up_proj" ]:
5206+ datas : list [Tensor ] = []
5207+
5208+ for xid in range (n_experts ):
5209+ ename = f"model.layers.{ bid } .mlp.experts.{ xid } .{ w_name } .weight"
5210+ datas .append (self ._experts [bid ][ename ])
5211+ del self ._experts [bid ][ename ]
5212+
5213+ data_torch = torch .stack (datas , dim = 0 )
5214+
5215+ merged_name = f"model.layers.{ bid } .mlp.experts.{ w_name } .weight"
5216+
5217+ new_name = self .map_tensor_name (merged_name )
5218+
5219+ tensors .append ((new_name , data_torch ))
5220+
5221+ return tensors
5222+
5223+ new_name = self .map_tensor_name (name )
5224+
5225+ if new_name == output_name and self .hparams .get ("norm_head" ):
5226+ data_torch = data_torch .float ()
5227+ data_torch /= torch .norm (data_torch , p = 2 , dim = 0 , keepdim = True ) + 1e-7
5228+
5229+ return [(new_name , data_torch )]
5230+
5231+ def prepare_tensors (self ):
5232+ super ().prepare_tensors ()
5233+
5234+ if self ._experts is not None :
5235+ # flatten `list[dict[str, Tensor]]` into `list[str]`
5236+ experts = [k for d in self ._experts for k in d .keys ()]
5237+ if len (experts ) > 0 :
5238+ raise ValueError (f"Unprocessed experts: { experts } " )
5239+
5240+
51365241@Model .register ("ChameleonForConditionalGeneration" )
51375242@Model .register ("ChameleonForCausalLM" ) # obsolete
51385243class ChameleonModel (Model ):
0 commit comments