@@ -749,6 +749,16 @@ void llama_model::load_hparams(llama_model_loader & ml) {
749749 }
750750 }
751751 } break;
752+ case LLM_ARCH_NEO_BERT:
753+ {
754+ ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
755+ ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
756+ ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type);
757+
758+ if (hparams.n_layer == 28) {
759+ type = LLM_TYPE_250M;
760+ }
761+ } break;
752762 case LLM_ARCH_BLOOM:
753763 {
754764 ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
@@ -2212,6 +2222,32 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
22122222 layer.layer_out_norm_b = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i), {n_embd}, 0);
22132223 }
22142224 } break;
2225+ case LLM_ARCH_NEO_BERT:
2226+ {
2227+ tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
2228+
2229+ cls = create_tensor(tn(LLM_TENSOR_CLS, "weight"), {n_embd, n_embd}, TENSOR_NOT_REQUIRED);
2230+ cls_b = create_tensor(tn(LLM_TENSOR_CLS, "bias"), {n_embd}, TENSOR_NOT_REQUIRED);
2231+
2232+ cls_out = create_tensor(tn(LLM_TENSOR_CLS_OUT, "weight"), {n_embd, hparams.n_cls_out}, TENSOR_NOT_REQUIRED);
2233+ cls_out_b = create_tensor(tn(LLM_TENSOR_CLS_OUT, "bias"), {hparams.n_cls_out}, TENSOR_NOT_REQUIRED);
2234+
2235+ output_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_OUTPUT_NORM, "weight"), {n_embd}, 0);
2236+
2237+ for (int i = 0; i < n_layer; ++i) {
2238+ auto & layer = layers[i];
2239+
2240+ layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
2241+
2242+ layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
2243+ layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
2244+
2245+ layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
2246+
2247+ layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff*2}, 0);
2248+ layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
2249+ }
2250+ } break;
22152251 case LLM_ARCH_JINA_BERT_V2:
22162252 {
22172253 tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // word_embeddings
@@ -6182,6 +6218,117 @@ struct llm_build_bert : public llm_graph_context {
61826218 }
61836219};
61846220
6221+ struct llm_build_neo_bert : public llm_graph_context {
6222+ llm_build_neo_bert(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
6223+ const int64_t n_embd_head = hparams.n_embd_head_v;
6224+ const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
6225+
6226+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
6227+
6228+ ggml_tensor * cur;
6229+ ggml_tensor * inpL;
6230+ ggml_tensor * inp_pos = build_inp_pos();
6231+
6232+ // construct input embeddings (token, type, position)
6233+ inpL = build_inp_embd(model.tok_embd);
6234+ cb(inpL, "inp_embd", -1);
6235+
6236+ auto * inp_attn = build_attn_inp_no_cache();
6237+
6238+ // iterate layers
6239+ for (int il = 0; il < n_layer; ++il) {
6240+ ggml_tensor * cur = inpL;
6241+
6242+ ggml_tensor * Qcur;
6243+ ggml_tensor * Kcur;
6244+ ggml_tensor * Vcur;
6245+
6246+ // pre-norm
6247+ cur = build_norm(inpL,
6248+ model.layers[il].attn_norm, NULL,
6249+ LLM_NORM_RMS, il);
6250+
6251+ // self-attention
6252+ cur = build_lora_mm(model.layers[il].wqkv, cur);
6253+ cb(cur, "wqkv", il);
6254+
6255+ Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
6256+ Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
6257+ Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
6258+
6259+ Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
6260+ Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
6261+ Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
6262+
6263+ // RoPE
6264+ Qcur = ggml_rope_ext(
6265+ ctx0, Qcur, inp_pos, nullptr,
6266+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
6267+ ext_factor, attn_factor, beta_fast, beta_slow
6268+ );
6269+
6270+ Kcur = ggml_rope_ext(
6271+ ctx0, Kcur, inp_pos, nullptr,
6272+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
6273+ ext_factor, attn_factor, beta_fast, beta_slow
6274+ );
6275+
6276+ cb(Qcur, "Qcur", il);
6277+ cb(Kcur, "Kcur", il);
6278+ cb(Vcur, "Vcur", il);
6279+
6280+ cur = build_attn(inp_attn, gf,
6281+ model.layers[il].wo, nullptr,
6282+ Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
6283+ cb(cur, "kqv_out", il);
6284+
6285+ if (il == n_layer - 1 && pooling_type == LLAMA_POOLING_TYPE_NONE) {
6286+ // skip computing output for unused tokens
6287+ ggml_tensor * inp_out_ids = build_inp_out_ids();
6288+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
6289+ inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
6290+ }
6291+
6292+ // re-add the layer input
6293+ cur = ggml_add(ctx0, cur, inpL);
6294+
6295+ ggml_tensor * ffn_inp = cur;
6296+ cb(ffn_inp, "ffn_inp", il);
6297+
6298+ // pre-norm
6299+ cur = build_norm(ffn_inp,
6300+ model.layers[il].ffn_norm, NULL,
6301+ LLM_NORM_RMS, il);
6302+ cb(cur, "ffn_norm", il);
6303+
6304+ // feed-forward network
6305+ cur = build_ffn(cur,
6306+ model.layers[il].ffn_up,
6307+ NULL, NULL, NULL, NULL, NULL,
6308+ model.layers[il].ffn_down,
6309+ NULL, NULL, NULL,
6310+ LLM_FFN_SWIGLU, LLM_FFN_SEQ, il);
6311+
6312+ // attentions bypass the intermediate layer
6313+ cur = ggml_add(ctx0, cur, ffn_inp);
6314+
6315+ // input for next layer
6316+ inpL = cur;
6317+ }
6318+
6319+ cur = inpL;
6320+
6321+ cur = build_norm(cur,
6322+ model.output_norm_enc, NULL,
6323+ LLM_NORM_RMS, -1);
6324+
6325+ cb(cur, "result_embd", -1);
6326+ res->t_embd = cur;
6327+
6328+ ggml_build_forward_expand(gf, cur);
6329+ }
6330+ };
6331+
61856332struct llm_build_bloom : public llm_graph_context {
61866333 llm_build_bloom(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
61876334 const int64_t n_embd_head = hparams.n_embd_head_v;
@@ -13595,6 +13742,7 @@ llama_memory_i * llama_model::create_memory(const llama_memory_params & params,
1359513742 case LLM_ARCH_JINA_BERT_V2:
1359613743 case LLM_ARCH_NOMIC_BERT:
1359713744 case LLM_ARCH_NOMIC_BERT_MOE:
13745+ case LLM_ARCH_NEO_BERT:
1359813746 case LLM_ARCH_WAVTOKENIZER_DEC:
1359913747 {
1360013748 res = nullptr;
@@ -13703,6 +13851,10 @@ llm_graph_result_ptr llama_model::build_graph(
1370313851 {
1370413852 llm = std::make_unique<llm_build_bert>(*this, params, gf);
1370513853 } break;
13854+ case LLM_ARCH_NEO_BERT:
13855+ {
13856+ llm = std::make_unique<llm_build_neo_bert>(*this, params, gf);
13857+ } break;
1370613858 case LLM_ARCH_BLOOM:
1370713859 {
1370813860 llm = std::make_unique<llm_build_bloom>(*this, params, gf);
@@ -14082,6 +14234,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
1408214234 case LLM_ARCH_GRANITE_MOE:
1408314235 case LLM_ARCH_CHAMELEON:
1408414236 case LLM_ARCH_BAILINGMOE:
14237+ case LLM_ARCH_NEO_BERT:
1408514238 case LLM_ARCH_ARCEE:
1408614239 return LLAMA_ROPE_TYPE_NORM;
1408714240
0 commit comments