@@ -9485,8 +9485,6 @@ struct llm_build_gemma3n_iswa : public llm_graph_context {
94859485 const int n_layer_sparsity = 10; // number of layers using activation sparsity
94869486 const float f_sparsity_std_mul = 1.6448533535003662f; // std_multiplier = normal_dist.icdf(0.95)
94879487
9488- ggml_tensor * one; // containing single element 1.0f
9489-
94909488 llm_build_gemma3n_iswa(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf)
94919489 : llm_graph_context(params),
94929490 model(model),
@@ -9498,14 +9496,6 @@ struct llm_build_gemma3n_iswa : public llm_graph_context {
94989496 ggml_tensor * cur;
94999497 ggml_tensor * inpL;
95009498
9501- // TODO: remove this when ggml_scale_add is implemented
9502- one = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
9503- {
9504- auto inp = std::make_unique<llm_graph_input_one>();
9505- inp->one = one;
9506- res->add_input(std::move(inp));
9507- }
9508-
95099499 inpL = build_inp_embd(model.tok_embd);
95109500
95119501 // important: do not normalize weights for raw embeddings input (i.e. encoded image emdeddings)
@@ -9895,7 +9885,7 @@ struct llm_build_gemma3n_iswa : public llm_graph_context {
98959885 cb(innovation, "innovation", il);
98969886
98979887 ggml_tensor * all_coefs = build_lora_mm(model.layers[il].altup_correct_coef, modalities); // [n_altup, n_tokens]
9898- all_coefs = ggml_add (ctx0, all_coefs, one);
9888+ all_coefs = ggml_scale_bias (ctx0, all_coefs, 1.0f, 1.0f); // + 1.0
98999889 cb(all_coefs, "all_coefs", il);
99009890 all_coefs = ggml_cont(ctx0, ggml_transpose(ctx0, all_coefs)); // [n_tokens, n_altup]
99019891 all_coefs = ggml_reshape_3d(ctx0, all_coefs, 1, n_tokens, n_altup); // [1, n_tokens, n_altup]
0 commit comments