diff --git a/README.md b/README.md index 1c0742370de39..e373611051e44 100644 --- a/README.md +++ b/README.md @@ -138,6 +138,7 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo - [x] [Ling models](https://huggingface.co/collections/inclusionAI/ling-67c51c85b34a7ea0aba94c32) - [x] [LFM2 models](https://huggingface.co/collections/LiquidAI/lfm2-686d721927015b2ad73eaa38) - [x] [Hunyuan models](https://huggingface.co/collections/tencent/hunyuan-dense-model-6890632cda26b19119c9c5e7) +- [x] [BailingMoeV2 (Ring/Ling 2.0) models](https://huggingface.co/collections/inclusionAI/ling-v2-68bf1dd2fc34c306c1fa6f86) #### Multimodal @@ -187,6 +188,7 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo - Swift [srgtuszy/llama-cpp-swift](https://github.com/srgtuszy/llama-cpp-swift) - Swift [ShenghaiWang/SwiftLlama](https://github.com/ShenghaiWang/SwiftLlama) - Delphi [Embarcadero/llama-cpp-delphi](https://github.com/Embarcadero/llama-cpp-delphi) +- Go (no CGo needed): [hybridgroup/yzma](https://github.com/hybridgroup/yzma) diff --git a/convert_hf_to_gguf.py b/convert_hf_to_gguf.py index 8c5132193e0e0..ed99dc8477231 100755 --- a/convert_hf_to_gguf.py +++ b/convert_hf_to_gguf.py @@ -892,8 +892,8 @@ def get_vocab_base_pre(self, tokenizer) -> str: # ref: https://huggingface.co/JetBrains/Mellum-4b-base res = "mellum" if chkhsh == "9b1be57e70d20d9501b2b3186e792d81181ae36ada3903c26f9fea418cf87206": - # ref: https://huggingface.co/inclusionAI/LLaDA-MoE-7B-A1B-Base - res = "llada-moe" + # ref: https://huggingface.co/inclusionAI/Ling-mini-base-2.0 + res = "bailingmoe2" if chkhsh == "53e325976a6e142379c19b09afcae354f2f496f147afa8f9e189a33fe4e3024e": # ref: https://huggingface.co/ibm-granite/granite-docling-258M res = "granite-docling" @@ -8055,6 +8055,103 @@ def prepare_tensors(self): raise ValueError(f"Unprocessed experts: {experts}") +@ModelBase.register("BailingMoeV2ForCausalLM") +class BailingMoeV2Model(TextModel): + model_arch = gguf.MODEL_ARCH.BAILINGMOE2 + + def __init__(self, *args, **kwargs): + super().__init__(*args, **kwargs) + if nextn_layers := self.hparams.get("num_nextn_predict_layers", 0): + self.block_count = self.hparams["num_hidden_layers"] + nextn_layers + self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count) + + def set_vocab(self): + self._set_vocab_gpt2() + + def set_gguf_parameters(self): + super().set_gguf_parameters() + hparams = self.hparams + if (rope_dim := hparams.get("head_dim")) is None: + rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"] + + self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5))) + rope_scaling = self.hparams.get("rope_scaling") or {} + if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling: + self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN) + self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"]) + self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"]) + else: + self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE) + self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"]) + self.gguf_writer.add_vocab_size(hparams["vocab_size"]) + self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"]) + self.gguf_writer.add_expert_shared_feed_forward_length(hparams.get("moe_shared_expert_intermediate_size", hparams["moe_intermediate_size"] * hparams["num_shared_experts"])) + self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"]) + self.gguf_writer.add_expert_count(hparams["num_experts"]) + self.gguf_writer.add_expert_shared_count(hparams["num_shared_experts"]) + self.gguf_writer.add_expert_group_count(hparams["n_group"]) + self.gguf_writer.add_expert_group_used_count(hparams["topk_group"]) + self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"]) + + if hparams["score_function"] == "sigmoid": + self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID) + elif hparams["score_function"] == "softmax": + self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX) + else: + raise ValueError(f"Unsupported score_function value: {hparams['score_function']}") + + if (nextn_layers := self.hparams.get("num_nextn_predict_layers")) is not None: + self.gguf_writer.add_nextn_predict_layers(nextn_layers) + + _experts: list[dict[str, Tensor]] | None = None + + def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: + if "mlp.experts" in name: + n_experts = self.hparams["num_experts"] + assert bid is not None + + tensors: list[tuple[str, Tensor]] = [] + + if self._experts is None: + self._experts = [{} for _ in range(self.block_count)] + + self._experts[bid][name] = data_torch + + if len(self._experts[bid]) >= n_experts * 3: + # merge the experts into a single 3d tensor + for w_name in ["down_proj", "gate_proj", "up_proj"]: + datas: list[Tensor] = [] + + for xid in range(n_experts): + ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight" + datas.append(self._experts[bid][ename]) + del self._experts[bid][ename] + + data_torch = torch.stack(datas, dim=0) + + merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight" + + new_name = self.map_tensor_name(merged_name) + + tensors.append((new_name, data_torch)) + + return tensors + + if name.endswith(".expert_bias"): + name = name.replace(".expert_bias", ".expert_bias.bias") + + return [(self.map_tensor_name(name), data_torch)] + + def prepare_tensors(self): + super().prepare_tensors() + + if self._experts is not None: + # flatten `list[dict[str, Tensor]]` into `list[str]` + experts = [k for d in self._experts for k in d.keys()] + if len(experts) > 0: + raise ValueError(f"Unprocessed experts: {experts}") + + @ModelBase.register("GroveMoeForCausalLM", "modeling_grove_moe.GroveMoeForCausalLM") class GroveMoeModel(TextModel): model_arch = gguf.MODEL_ARCH.GROVEMOE diff --git a/convert_hf_to_gguf_update.py b/convert_hf_to_gguf_update.py index 28002f766e23b..0ebc1b160f603 100755 --- a/convert_hf_to_gguf_update.py +++ b/convert_hf_to_gguf_update.py @@ -139,7 +139,7 @@ class TOKENIZER_TYPE(IntEnum): {"name": "lfm2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LiquidAI/LFM2-Tokenizer"}, {"name": "exaone4", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LGAI-EXAONE/EXAONE-4.0-32B", }, {"name": "mellum", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/JetBrains/Mellum-4b-base", }, - {"name": "llada-moe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/inclusionAI/LLaDA-MoE-7B-A1B-Base", }, + {"name": "bailingmoe2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/inclusionAI/Ling-mini-base-2.0", }, {"name": "granite-docling", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/ibm-granite/granite-docling-258M", }, ] diff --git a/docs/ops.md b/docs/ops.md index 938efac815fc0..dfd1cfab6a8b2 100644 --- a/docs/ops.md +++ b/docs/ops.md @@ -22,7 +22,7 @@ Legend: | ARANGE | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ | | ARGMAX | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ | | ARGSORT | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | -| CEIL | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | +| CEIL | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ | ❌ | | CLAMP | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | 🟡 | ❌ | | CONCAT | ❌ | ✅ | ✅ | 🟡 | ✅ | 🟡 | 🟡 | ✅ | ❌ | | CONT | ❌ | 🟡 | ✅ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | ❌ | @@ -42,7 +42,7 @@ Legend: | ELU | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ | ❌ | | EXP | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ | ❌ | | FLASH_ATTN_EXT | ❌ | 🟡 | ✅ | 🟡 | 🟡 | ❌ | ❌ | 🟡 | ❌ | -| FLOOR | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | +| FLOOR | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ | ❌ | | GATED_LINEAR_ATTN | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ✅ | ❌ | ❌ | | GEGLU | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 | ❌ | | GEGLU_ERF | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 | ❌ | @@ -72,7 +72,7 @@ Legend: | OPT_STEP_SGD | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | | OUT_PROD | 🟡 | ❌ | 🟡 | 🟡 | ❌ | ❌ | 🟡 | ❌ | ❌ | | PAD | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | 🟡 | ✅ | ❌ | -| PAD_REFLECT_1D | ❌ | ✅ | ✅ | ❌ | ✅ | ❌ | ❌ | ❌ | ❌ | +| PAD_REFLECT_1D | ❌ | ✅ | ✅ | ❌ | ✅ | ❌ | ✅ | ❌ | ❌ | | POOL_2D | ❌ | 🟡 | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ | | REGLU | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 | ❌ | | RELU | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | ❌ | @@ -84,7 +84,7 @@ Legend: | ROLL | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | ❌ | ✅ | ❌ | | ROPE | ❌ | 🟡 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | | ROPE_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ | -| ROUND | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | +| ROUND | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ | ❌ | | RWKV_WKV6 | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ | | RWKV_WKV7 | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ | | SCALE | ❌ | 🟡 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | @@ -111,6 +111,6 @@ Legend: | TANH | ❌ | ✅ | ✅ | 🟡 | 🟡 | ✅ | 🟡 | 🟡 | ❌ | | TIMESTEP_EMBEDDING | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | | TOPK_MOE | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ✅ | ❌ | ❌ | -| TRUNC | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | +| TRUNC | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ | ❌ | | UPSCALE | ❌ | 🟡 | ✅ | ✅ | 🟡 | ✅ | 🟡 | ✅ | ❌ | | XIELU | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | diff --git a/docs/ops/SYCL.csv b/docs/ops/SYCL.csv index d7efa43cdf3da..fe6876357f359 100644 --- a/docs/ops/SYCL.csv +++ b/docs/ops/SYCL.csv @@ -31,6 +31,14 @@ "SYCL0","GELU_ERF","type=f16,ne_a=[5,7,11,13],v=0","support","1","yes","SYCL" "SYCL0","XIELU","type=f16,ne_a=[128,2,2,2],v=0","support","0","no","SYCL" "SYCL0","XIELU","type=f16,ne_a=[5,7,11,13],v=0","support","0","no","SYCL" +"SYCL0","FLOOR","type=f16,ne_a=[128,2,2,2],v=0","support","1","yes","SYCL" +"SYCL0","FLOOR","type=f16,ne_a=[5,7,11,13],v=0","support","1","yes","SYCL" +"SYCL0","CEIL","type=f16,ne_a=[128,2,2,2],v=0","support","1","yes","SYCL" +"SYCL0","CEIL","type=f16,ne_a=[5,7,11,13],v=0","support","1","yes","SYCL" +"SYCL0","ROUND","type=f16,ne_a=[128,2,2,2],v=0","support","1","yes","SYCL" +"SYCL0","ROUND","type=f16,ne_a=[5,7,11,13],v=0","support","1","yes","SYCL" +"SYCL0","TRUNC","type=f16,ne_a=[128,2,2,2],v=0","support","1","yes","SYCL" +"SYCL0","TRUNC","type=f16,ne_a=[5,7,11,13],v=0","support","1","yes","SYCL" "SYCL0","ABS","type=f16,ne_a=[128,2,2,2],v=1","support","0","no","SYCL" "SYCL0","ABS","type=f16,ne_a=[5,7,11,13],v=1","support","0","no","SYCL" "SYCL0","SGN","type=f16,ne_a=[128,2,2,2],v=1","support","0","no","SYCL" @@ -95,6 +103,14 @@ "SYCL0","GELU_ERF","type=f32,ne_a=[5,7,11,13],v=0","support","1","yes","SYCL" "SYCL0","XIELU","type=f32,ne_a=[128,2,2,2],v=0","support","0","no","SYCL" "SYCL0","XIELU","type=f32,ne_a=[5,7,11,13],v=0","support","0","no","SYCL" +"SYCL0","FLOOR","type=f32,ne_a=[128,2,2,2],v=0","support","1","yes","SYCL" +"SYCL0","FLOOR","type=f32,ne_a=[5,7,11,13],v=0","support","1","yes","SYCL" +"SYCL0","CEIL","type=f32,ne_a=[128,2,2,2],v=0","support","1","yes","SYCL" +"SYCL0","CEIL","type=f32,ne_a=[5,7,11,13],v=0","support","1","yes","SYCL" +"SYCL0","ROUND","type=f32,ne_a=[128,2,2,2],v=0","support","1","yes","SYCL" +"SYCL0","ROUND","type=f32,ne_a=[5,7,11,13],v=0","support","1","yes","SYCL" +"SYCL0","TRUNC","type=f32,ne_a=[128,2,2,2],v=0","support","1","yes","SYCL" +"SYCL0","TRUNC","type=f32,ne_a=[5,7,11,13],v=0","support","1","yes","SYCL" "SYCL0","ABS","type=f32,ne_a=[128,2,2,2],v=1","support","0","no","SYCL" "SYCL0","ABS","type=f32,ne_a=[5,7,11,13],v=1","support","0","no","SYCL" "SYCL0","SGN","type=f32,ne_a=[128,2,2,2],v=1","support","0","no","SYCL" @@ -9363,8 +9379,8 @@ "SYCL0","ACC","type=f32,ne_a=[256,17,1,1],ne_b=[256,16,1,1]","support","1","yes","SYCL" "SYCL0","PAD","type=f32,ne_a=[512,512,1,1],pad_0=1,pad_1=1","support","1","yes","SYCL" "SYCL0","PAD","type=f32,ne_a=[512,512,3,1],lp0=1,rp0=1,lp1=1,rp1=1,lp2=1,rp2=1,lp3=1,rp3=1,v=0","support","1","yes","SYCL" -"SYCL0","PAD_REFLECT_1D","type=f32,ne_a=[512,34,2,1],pad_0=10,pad_1=9","support","0","no","SYCL" -"SYCL0","PAD_REFLECT_1D","type=f32,ne_a=[3000,384,4,1],pad_0=10,pad_1=9","support","0","no","SYCL" +"SYCL0","PAD_REFLECT_1D","type=f32,ne_a=[3000,384,4,1],pad_0=10,pad_1=9","support","0","yes","SYCL" +"SYCL0","PAD_REFLECT_1D","type=f32,ne_a=[512,34,2,1],pad_0=10,pad_1=9","support","0","yes","SYCL" "SYCL0","ROLL","shift0=3,shift1=-2,shift3=1,shift4=-1","support","0","no","SYCL" "SYCL0","ARANGE","type=f32,start=0.000000,stop=10.000000,step=1.000000","support","0","no","SYCL" "SYCL0","TIMESTEP_EMBEDDING","type=f32,ne_a=[2,1,1,1],dim=320,max_period=10000","support","1","yes","SYCL" diff --git a/docs/ops/Vulkan.csv b/docs/ops/Vulkan.csv index ea252577280d5..298c2a6ccd5fc 100644 --- a/docs/ops/Vulkan.csv +++ b/docs/ops/Vulkan.csv @@ -3263,27 +3263,27 @@ "Vulkan0","RMS_NORM_MUL_ADD","type=f32,ne=[64,5,4,3],eps=1.000000,broadcast=0","support","1","yes","Vulkan" "Vulkan0","RMS_NORM_MUL_ADD","type=f32,ne=[64,5,4,3],eps=1.000000,broadcast=1","support","1","yes","Vulkan" "Vulkan0","L2_NORM","type=f32,ne=[64,5,4,3]","support","1","yes","Vulkan" -"Vulkan0","SSM_CONV","type=f32,ne_a=[4,1024,1,1],ne_b=[3,1024,1,1]","support","0","no","Vulkan" -"Vulkan0","SSM_CONV","type=f32,ne_a=[8,1024,1,1],ne_b=[3,1024,1,1]","support","0","no","Vulkan" -"Vulkan0","SSM_CONV","type=f32,ne_a=[4,1024,4,1],ne_b=[3,1024,1,1]","support","0","no","Vulkan" -"Vulkan0","SSM_CONV","type=f32,ne_a=[4,1536,1,1],ne_b=[3,1536,1,1]","support","0","no","Vulkan" -"Vulkan0","SSM_CONV","type=f32,ne_a=[8,1536,1,1],ne_b=[3,1536,1,1]","support","0","no","Vulkan" -"Vulkan0","SSM_CONV","type=f32,ne_a=[4,1536,4,1],ne_b=[3,1536,1,1]","support","0","no","Vulkan" -"Vulkan0","SSM_CONV","type=f32,ne_a=[4,2048,1,1],ne_b=[3,2048,1,1]","support","0","no","Vulkan" -"Vulkan0","SSM_CONV","type=f32,ne_a=[8,2048,1,1],ne_b=[3,2048,1,1]","support","0","no","Vulkan" -"Vulkan0","SSM_CONV","type=f32,ne_a=[4,2048,4,1],ne_b=[3,2048,1,1]","support","0","no","Vulkan" -"Vulkan0","SSM_CONV","type=f32,ne_a=[4,1024,1,1],ne_b=[4,1024,1,1]","support","0","no","Vulkan" -"Vulkan0","SSM_CONV","type=f32,ne_a=[8,1024,1,1],ne_b=[4,1024,1,1]","support","0","no","Vulkan" -"Vulkan0","SSM_CONV","type=f32,ne_a=[4,1024,4,1],ne_b=[4,1024,1,1]","support","0","no","Vulkan" -"Vulkan0","SSM_CONV","type=f32,ne_a=[4,1536,1,1],ne_b=[4,1536,1,1]","support","0","no","Vulkan" -"Vulkan0","SSM_CONV","type=f32,ne_a=[8,1536,1,1],ne_b=[4,1536,1,1]","support","0","no","Vulkan" -"Vulkan0","SSM_CONV","type=f32,ne_a=[4,1536,4,1],ne_b=[4,1536,1,1]","support","0","no","Vulkan" -"Vulkan0","SSM_CONV","type=f32,ne_a=[4,2048,1,1],ne_b=[4,2048,1,1]","support","0","no","Vulkan" -"Vulkan0","SSM_CONV","type=f32,ne_a=[8,2048,1,1],ne_b=[4,2048,1,1]","support","0","no","Vulkan" -"Vulkan0","SSM_CONV","type=f32,ne_a=[4,2048,4,1],ne_b=[4,2048,1,1]","support","0","no","Vulkan" -"Vulkan0","SSM_SCAN","type=f32,d_state=16,head_dim=1,n_head=1024,n_group=1,n_seq_tokens=32,n_seqs=4","support","0","no","Vulkan" -"Vulkan0","SSM_SCAN","type=f32,d_state=128,head_dim=64,n_head=16,n_group=2,n_seq_tokens=32,n_seqs=4","support","0","no","Vulkan" -"Vulkan0","SSM_SCAN","type=f32,d_state=256,head_dim=64,n_head=8,n_group=2,n_seq_tokens=32,n_seqs=4","support","0","no","Vulkan" +"Vulkan0","SSM_CONV","type=f32,ne_a=[4,1024,1,1],ne_b=[3,1024,1,1]","support","1","yes","Vulkan" +"Vulkan0","SSM_CONV","type=f32,ne_a=[8,1024,1,1],ne_b=[3,1024,1,1]","support","1","yes","Vulkan" +"Vulkan0","SSM_CONV","type=f32,ne_a=[4,1024,4,1],ne_b=[3,1024,1,1]","support","1","yes","Vulkan" +"Vulkan0","SSM_CONV","type=f32,ne_a=[4,1536,1,1],ne_b=[3,1536,1,1]","support","1","yes","Vulkan" +"Vulkan0","SSM_CONV","type=f32,ne_a=[8,1536,1,1],ne_b=[3,1536,1,1]","support","1","yes","Vulkan" +"Vulkan0","SSM_CONV","type=f32,ne_a=[4,1536,4,1],ne_b=[3,1536,1,1]","support","1","yes","Vulkan" +"Vulkan0","SSM_CONV","type=f32,ne_a=[4,2048,1,1],ne_b=[3,2048,1,1]","support","1","yes","Vulkan" +"Vulkan0","SSM_CONV","type=f32,ne_a=[8,2048,1,1],ne_b=[3,2048,1,1]","support","1","yes","Vulkan" +"Vulkan0","SSM_CONV","type=f32,ne_a=[4,2048,4,1],ne_b=[3,2048,1,1]","support","1","yes","Vulkan" +"Vulkan0","SSM_CONV","type=f32,ne_a=[4,1024,1,1],ne_b=[4,1024,1,1]","support","1","yes","Vulkan" +"Vulkan0","SSM_CONV","type=f32,ne_a=[8,1024,1,1],ne_b=[4,1024,1,1]","support","1","yes","Vulkan" +"Vulkan0","SSM_CONV","type=f32,ne_a=[4,1024,4,1],ne_b=[4,1024,1,1]","support","1","yes","Vulkan" +"Vulkan0","SSM_CONV","type=f32,ne_a=[4,1536,1,1],ne_b=[4,1536,1,1]","support","1","yes","Vulkan" +"Vulkan0","SSM_CONV","type=f32,ne_a=[8,1536,1,1],ne_b=[4,1536,1,1]","support","1","yes","Vulkan" +"Vulkan0","SSM_CONV","type=f32,ne_a=[4,1536,4,1],ne_b=[4,1536,1,1]","support","1","yes","Vulkan" +"Vulkan0","SSM_CONV","type=f32,ne_a=[4,2048,1,1],ne_b=[4,2048,1,1]","support","1","yes","Vulkan" +"Vulkan0","SSM_CONV","type=f32,ne_a=[8,2048,1,1],ne_b=[4,2048,1,1]","support","1","yes","Vulkan" +"Vulkan0","SSM_CONV","type=f32,ne_a=[4,2048,4,1],ne_b=[4,2048,1,1]","support","1","yes","Vulkan" +"Vulkan0","SSM_SCAN","type=f32,d_state=16,head_dim=1,n_head=1024,n_group=1,n_seq_tokens=32,n_seqs=4","support","1","yes","Vulkan" +"Vulkan0","SSM_SCAN","type=f32,d_state=128,head_dim=64,n_head=16,n_group=2,n_seq_tokens=32,n_seqs=4","support","1","yes","Vulkan" +"Vulkan0","SSM_SCAN","type=f32,d_state=256,head_dim=64,n_head=8,n_group=2,n_seq_tokens=32,n_seqs=4","support","1","yes","Vulkan" "Vulkan0","RWKV_WKV6","type=f32,head_count=32,head_size=64,n_seq_tokens=1,n_seqs=1","support","1","yes","Vulkan" "Vulkan0","RWKV_WKV6","type=f32,head_count=32,head_size=64,n_seq_tokens=32,n_seqs=1","support","1","yes","Vulkan" "Vulkan0","RWKV_WKV6","type=f32,head_count=32,head_size=64,n_seq_tokens=32,n_seqs=4","support","1","yes","Vulkan" diff --git a/ggml/src/ggml-alloc.c b/ggml/src/ggml-alloc.c index 929bc4488156f..c830c09655fec 100644 --- a/ggml/src/ggml-alloc.c +++ b/ggml/src/ggml-alloc.c @@ -598,6 +598,26 @@ static bool ggml_gallocr_is_allocated(ggml_gallocr_t galloc, struct ggml_tensor return t->data != NULL || ggml_gallocr_hash_get(galloc, t)->allocated; } +// free the extra space at the end if the new tensor is smaller +static void ggml_gallocr_free_extra_space(ggml_gallocr_t galloc, struct ggml_tensor * node, struct ggml_tensor * parent) { + struct hash_node * hn = ggml_gallocr_hash_get(galloc, node); + struct hash_node * p_hn = ggml_gallocr_hash_get(galloc, parent); + + size_t parent_size = ggml_backend_buft_get_alloc_size(galloc->bufts[p_hn->buffer_id], parent); + size_t node_size = ggml_backend_buft_get_alloc_size(galloc->bufts[hn->buffer_id], node); + + GGML_ASSERT(parent_size >= node_size); + + if (parent_size > node_size) { + struct ggml_dyn_tallocr * p_alloc = galloc->buf_tallocs[p_hn->buffer_id]; + struct buffer_address p_addr = p_hn->addr; + p_addr.offset += node_size; + size_t extra_size = parent_size - node_size; + AT_PRINTF("freeing extra %zu bytes from parent %s for %s\n", extra_size, parent->name, node->name); + ggml_dyn_tallocr_free_tensor(p_alloc, p_addr, extra_size, parent); + } +} + static void ggml_gallocr_allocate_node(ggml_gallocr_t galloc, struct ggml_tensor * node, int buffer_id) { GGML_ASSERT(buffer_id >= 0); struct hash_node * hn = ggml_gallocr_hash_get(galloc, node); @@ -643,6 +663,7 @@ static void ggml_gallocr_allocate_node(ggml_gallocr_t galloc, struct ggml_tensor hn->addr = p_hn->addr; p_hn->allocated = false; // avoid freeing the parent view_src_hn->allocated = false; + ggml_gallocr_free_extra_space(galloc, node, view_src); return; } } else { @@ -650,6 +671,7 @@ static void ggml_gallocr_allocate_node(ggml_gallocr_t galloc, struct ggml_tensor hn->buffer_id = p_hn->buffer_id; hn->addr = p_hn->addr; p_hn->allocated = false; // avoid freeing the parent + ggml_gallocr_free_extra_space(galloc, node, parent); return; } } diff --git a/ggml/src/ggml-sycl/backend.hpp b/ggml/src/ggml-sycl/backend.hpp index 6ff3215d5a439..b1575b8145138 100644 --- a/ggml/src/ggml-sycl/backend.hpp +++ b/ggml/src/ggml-sycl/backend.hpp @@ -37,5 +37,7 @@ #include "softmax.hpp" #include "tsembd.hpp" #include "wkv.hpp" +#include "pad_reflect_1d.hpp" + #endif // GGML_SYCL_BACKEND_HPP diff --git a/ggml/src/ggml-sycl/element_wise.cpp b/ggml/src/ggml-sycl/element_wise.cpp index 58f5125c9cf6e..810995d0cbf74 100644 --- a/ggml/src/ggml-sycl/element_wise.cpp +++ b/ggml/src/ggml-sycl/element_wise.cpp @@ -150,6 +150,26 @@ static __dpct_inline__ T op_clamp(T x, float min_val, float max_val) { return x < static_cast(min_val) ? static_cast(min_val) : (x > static_cast(max_val) ? static_cast(max_val) : x); } +template +static __dpct_inline__ T op_floor(T x) { + return sycl::floor(x); +} + +template +static __dpct_inline__ T op_ceil(T x) { + return sycl::ceil(x); +} + +template +static __dpct_inline__ T op_round(T x) { + return sycl::round(x); +} + +template +static __dpct_inline__ T op_trunc(T x) { + return sycl::trunc(x); +} + template static void unary_op_sgn_kernel(const T * x, T * dst, const int k, const sycl::nd_item<1> &item_ct1) { SYCL_GLOBAL_ID_LOOP(k, item_ct1) { @@ -304,6 +324,34 @@ static void unary_op_clamp_kernel(const T * x, T * dst, const int k, const sycl: } } +template +static void unary_op_floor_kernel(const T * x, T * dst, const int k, const sycl::nd_item<1> &item_ct1) { + SYCL_GLOBAL_ID_LOOP(k, item_ct1) { + dst[i] = op_floor(x[i]); + } +} + +template +static void unary_op_ceil_kernel(const T * x, T * dst, const int k, const sycl::nd_item<1> &item_ct1) { + SYCL_GLOBAL_ID_LOOP(k, item_ct1) { + dst[i] = op_ceil(x[i]); + } +} + +template +static void unary_op_round_kernel(const T * x, T * dst, const int k, const sycl::nd_item<1> &item_ct1) { + SYCL_GLOBAL_ID_LOOP(k, item_ct1) { + dst[i] = op_round(x[i]); + } +} + +template +static void unary_op_trunc_kernel(const T * x, T * dst, const int k, const sycl::nd_item<1> &item_ct1) { + SYCL_GLOBAL_ID_LOOP(k, item_ct1) { + dst[i] = op_trunc(x[i]); + } +} + template static void upscale(const T *x, T *dst, const int nb00, const int nb01, const int nb02, const int nb03, const int ne10, const int ne11, @@ -897,6 +945,58 @@ static inline void ggml_sycl_op_clamp(ggml_backend_sycl_context & ctx, ggml_tens }, min_val, max_val); } +static inline void ggml_sycl_op_floor(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { + ggml_sycl_detail::dispatch_ggml_sycl_op_unary(ctx, dst, + [](const auto* src, auto* dst_ptr, int k_elements, queue_ptr stream) { + const int num_blocks = ceil_div(k_elements, 256); + stream->parallel_for( + sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(256), + sycl::range<1>(256)), + [=](sycl::nd_item<1> item_ct1) { + unary_op_floor_kernel(src, dst_ptr, k_elements, item_ct1); + }); + }); +} + +static inline void ggml_sycl_op_ceil(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { + ggml_sycl_detail::dispatch_ggml_sycl_op_unary(ctx, dst, + [](const auto* src, auto* dst_ptr, int k_elements, queue_ptr stream) { + const int num_blocks = ceil_div(k_elements, 256); + stream->parallel_for( + sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(256), + sycl::range<1>(256)), + [=](sycl::nd_item<1> item_ct1) { + unary_op_ceil_kernel(src, dst_ptr, k_elements, item_ct1); + }); + }); +} + +static inline void ggml_sycl_op_round(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { + ggml_sycl_detail::dispatch_ggml_sycl_op_unary(ctx, dst, + [](const auto* src, auto* dst_ptr, int k_elements, queue_ptr stream) { + const int num_blocks = ceil_div(k_elements, 256); + stream->parallel_for( + sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(256), + sycl::range<1>(256)), + [=](sycl::nd_item<1> item_ct1) { + unary_op_round_kernel(src, dst_ptr, k_elements, item_ct1); + }); + }); +} + +static inline void ggml_sycl_op_trunc(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { + ggml_sycl_detail::dispatch_ggml_sycl_op_unary(ctx, dst, + [](const auto* src, auto* dst_ptr, int k_elements, queue_ptr stream) { + const int num_blocks = ceil_div(k_elements, 256); + stream->parallel_for( + sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(256), + sycl::range<1>(256)), + [=](sycl::nd_item<1> item_ct1) { + unary_op_trunc_kernel(src, dst_ptr, k_elements, item_ct1); + }); + }); +} + static inline void ggml_sycl_op_acc(ggml_backend_sycl_context & ctx, ggml_tensor *dst) { GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32); GGML_ASSERT(dst->src[1]->type == GGML_TYPE_F32); @@ -1122,3 +1222,23 @@ void ggml_sycl_arange(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/0); ggml_sycl_detail::ggml_sycl_op_arange(ctx, dst); } + +void ggml_sycl_floor(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { + scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1); + ggml_sycl_op_floor(ctx, dst); +} + +void ggml_sycl_ceil(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { + scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1); + ggml_sycl_op_ceil(ctx, dst); +} + +void ggml_sycl_round(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { + scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1); + ggml_sycl_op_round(ctx, dst); +} + +void ggml_sycl_trunc(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { + scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1); + ggml_sycl_op_trunc(ctx, dst); +} diff --git a/ggml/src/ggml-sycl/element_wise.hpp b/ggml/src/ggml-sycl/element_wise.hpp index ed96c55f75a7a..fcf93295cb215 100644 --- a/ggml/src/ggml-sycl/element_wise.hpp +++ b/ggml/src/ggml-sycl/element_wise.hpp @@ -80,6 +80,10 @@ void ggml_sycl_reglu(ggml_backend_sycl_context & ctx, ggml_tensor * dst); void ggml_sycl_swiglu(ggml_backend_sycl_context & ctx, ggml_tensor * dst); void ggml_sycl_geglu_erf(ggml_backend_sycl_context & ctx, ggml_tensor * dst); void ggml_sycl_geglu_quick(ggml_backend_sycl_context & ctx, ggml_tensor * dst); +void ggml_sycl_floor(ggml_backend_sycl_context & ctx, ggml_tensor * dst); +void ggml_sycl_ceil(ggml_backend_sycl_context & ctx, ggml_tensor * dst); +void ggml_sycl_round(ggml_backend_sycl_context & ctx, ggml_tensor * dst); +void ggml_sycl_trunc(ggml_backend_sycl_context & ctx, ggml_tensor * dst); void ggml_sycl_arange(ggml_backend_sycl_context & ctx, ggml_tensor * dst); diff --git a/ggml/src/ggml-sycl/ggml-sycl.cpp b/ggml/src/ggml-sycl/ggml-sycl.cpp index a7e077ec8ebe0..33f9035075ba7 100644 --- a/ggml/src/ggml-sycl/ggml-sycl.cpp +++ b/ggml/src/ggml-sycl/ggml-sycl.cpp @@ -3698,6 +3698,18 @@ static bool ggml_sycl_compute_forward(ggml_backend_sycl_context & ctx, struct gg case GGML_UNARY_OP_ELU: ggml_sycl_elu(ctx, dst); break; + case GGML_UNARY_OP_FLOOR: + ggml_sycl_floor(ctx, dst); + break; + case GGML_UNARY_OP_CEIL: + ggml_sycl_ceil(ctx, dst); + break; + case GGML_UNARY_OP_ROUND: + ggml_sycl_round(ctx, dst); + break; + case GGML_UNARY_OP_TRUNC: + ggml_sycl_trunc(ctx, dst); + break; default: return false; } @@ -3732,6 +3744,9 @@ static bool ggml_sycl_compute_forward(ggml_backend_sycl_context & ctx, struct gg case GGML_OP_CONCAT: ggml_sycl_op_concat(ctx, dst); break; + case GGML_OP_PAD_REFLECT_1D: + ggml_sycl_op_pad_reflect_1d(ctx,dst); + break; case GGML_OP_UPSCALE: ggml_sycl_upscale(ctx, dst); break; @@ -4262,6 +4277,10 @@ static bool ggml_backend_sycl_device_supports_op(ggml_backend_dev_t dev, const g case GGML_UNARY_OP_SGN: case GGML_UNARY_OP_ABS: case GGML_UNARY_OP_ELU: + case GGML_UNARY_OP_FLOOR: + case GGML_UNARY_OP_CEIL: + case GGML_UNARY_OP_ROUND: + case GGML_UNARY_OP_TRUNC: #if defined (GGML_SYCL_F16) return ggml_is_contiguous(op->src[0]) && (op->type == op->src[0]->type); #else @@ -4439,6 +4458,8 @@ static bool ggml_backend_sycl_device_supports_op(ggml_backend_dev_t dev, const g case GGML_OP_DIV: case GGML_OP_REPEAT: return true; + case GGML_OP_PAD_REFLECT_1D: + return ggml_is_contiguous(op->src[0]) && op-> type == GGML_TYPE_F32 && op->src[0]->type == GGML_TYPE_F32; case GGML_OP_SQR: case GGML_OP_SQRT: case GGML_OP_SIN: diff --git a/ggml/src/ggml-sycl/pad_reflect_1d.cpp b/ggml/src/ggml-sycl/pad_reflect_1d.cpp new file mode 100644 index 0000000000000..e56655a98a106 --- /dev/null +++ b/ggml/src/ggml-sycl/pad_reflect_1d.cpp @@ -0,0 +1,72 @@ +#include "pad_reflect_1d.hpp" + +void pad_reflect_1d_f32(const float* src,float* dst, + const int64_t ne0, const int64_t ne02, const int p0, const int p1, + const int64_t nb0, const int64_t nb1, const int64_t nb2, const int64_t nb3, + const int64_t nb00, const int64_t nb01, const int64_t nb02, const int64_t nb03, + const sycl::nd_item<3> &item_ct1){ + + const int i0 = item_ct1.get_group(0) * SYCL_CONCAT_BLOCK_SIZE + item_ct1.get_local_id(0); + const int i1 = item_ct1.get_group(1); + const int g2 = item_ct1.get_group(2); + const int i2 = g2 % ne02; + const int i3 = g2 / ne02; + + if (i0 >= p0 + ne0 + p1) return; + + int t = i0 - p0; + int period = 2 * ne0 -2; + int m = t % period; + m += (m < 0) * period; + int center = ne0 -1; + int srci0 = center - abs(center - m); + + int offest_src = i3*nb3 + i2*nb2 + i1*nb1 + srci0*nb0; + int offest_dst = i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00; + dst[offest_dst] = src[offest_src]; + +} + +void ggml_sycl_op_pad_reflect_1d(ggml_backend_sycl_context& ctx, ggml_tensor* dst){ + + const ggml_tensor * src0 = dst->src[0]; + queue_ptr stream = ctx.stream(); + + GGML_ASSERT(src0->type == GGML_TYPE_F32); + GGML_ASSERT( dst->type == GGML_TYPE_F32); + + const int32_t * opts = (const int32_t *) dst->op_params; + const int p0 = opts[0]; + const int p1 = opts[1]; + + const int64_t ne0 = src0->ne[0]; + + const int64_t ne00 = dst->ne[0]; + const int64_t ne01 = dst->ne[1]; + const int64_t ne02 = dst->ne[2]; + const int64_t ne03 = dst->ne[3]; + + const int64_t nb00 = dst->nb[0]; + const int64_t nb01 = dst->nb[1]; + const int64_t nb02 = dst->nb[2]; + const int64_t nb03 = dst->nb[3]; + const int64_t nb0 = src0->nb[0]; + const int64_t nb1 = src0->nb[1]; + const int64_t nb2 = src0->nb[2]; + const int64_t nb3 = src0->nb[3]; + + int num_blocks = (ne00 + SYCL_CONCAT_BLOCK_SIZE - 1) / SYCL_CONCAT_BLOCK_SIZE; + sycl::range<3> global(num_blocks * SYCL_CONCAT_BLOCK_SIZE, ne01, ne02*ne03); + sycl::range<3> local(SYCL_CONCAT_BLOCK_SIZE, 1, 1); + + stream->parallel_for( + sycl::nd_range<3>(global, + local), + [=](sycl::nd_item<3> item_ct1) { pad_reflect_1d_f32( + (const float *) src0->data, (float *) dst->data, + ne0, ne02, p0, p1, + nb0, nb1, nb2, nb3, + nb00, nb01, nb02, nb03 + , item_ct1); + }); +} diff --git a/ggml/src/ggml-sycl/pad_reflect_1d.hpp b/ggml/src/ggml-sycl/pad_reflect_1d.hpp new file mode 100644 index 0000000000000..a24509dea6384 --- /dev/null +++ b/ggml/src/ggml-sycl/pad_reflect_1d.hpp @@ -0,0 +1,8 @@ +#ifndef GGML_SYCL_PAD_REFLECT_1D_HPP +#define GGML_SYCL_PAD_REFLECT_1D_HPP + +#include "common.hpp" + +void ggml_sycl_op_pad_reflect_1d(ggml_backend_sycl_context& ctx, ggml_tensor* dst); + +#endif // GGML_SYCL_PAD_REFLECT_1D_HPP diff --git a/gguf-py/gguf/constants.py b/gguf-py/gguf/constants.py index f5e5fba8008bd..1b71fb3749aaa 100644 --- a/gguf-py/gguf/constants.py +++ b/gguf-py/gguf/constants.py @@ -102,6 +102,8 @@ class LLM: EXPERT_COUNT = "{arch}.expert_count" EXPERT_USED_COUNT = "{arch}.expert_used_count" EXPERT_SHARED_COUNT = "{arch}.expert_shared_count" + EXPERT_GROUP_COUNT = "{arch}.expert_group_count" + EXPERT_GROUP_USED_COUNT = "{arch}.expert_group_used_count" EXPERT_WEIGHTS_SCALE = "{arch}.expert_weights_scale" EXPERT_WEIGHTS_NORM = "{arch}.expert_weights_norm" EXPERT_GATING_FUNC = "{arch}.expert_gating_func" @@ -400,6 +402,7 @@ class MODEL_ARCH(IntEnum): WAVTOKENIZER_DEC = auto() PLM = auto() BAILINGMOE = auto() + BAILINGMOE2 = auto() DOTS1 = auto() ARCEE = auto() ERNIE4_5 = auto() @@ -744,6 +747,7 @@ class MODEL_TENSOR(IntEnum): MODEL_ARCH.WAVTOKENIZER_DEC: "wavtokenizer-dec", MODEL_ARCH.PLM: "plm", MODEL_ARCH.BAILINGMOE: "bailingmoe", + MODEL_ARCH.BAILINGMOE2: "bailingmoe2", MODEL_ARCH.DOTS1: "dots1", MODEL_ARCH.ARCEE: "arcee", MODEL_ARCH.ERNIE4_5: "ernie4_5", @@ -2533,6 +2537,35 @@ class MODEL_TENSOR(IntEnum): MODEL_TENSOR.FFN_DOWN_SHEXP, MODEL_TENSOR.FFN_UP_SHEXP, ], + MODEL_ARCH.BAILINGMOE2: [ + MODEL_TENSOR.TOKEN_EMBD, + MODEL_TENSOR.OUTPUT_NORM, + MODEL_TENSOR.OUTPUT, + MODEL_TENSOR.ATTN_NORM, + MODEL_TENSOR.ATTN_Q_NORM, + MODEL_TENSOR.ATTN_K_NORM, + MODEL_TENSOR.ATTN_QKV, + MODEL_TENSOR.ATTN_OUT, + MODEL_TENSOR.FFN_GATE_INP, + MODEL_TENSOR.FFN_EXP_PROBS_B, + MODEL_TENSOR.FFN_NORM, + MODEL_TENSOR.FFN_GATE, + MODEL_TENSOR.FFN_DOWN, + MODEL_TENSOR.FFN_UP, + MODEL_TENSOR.FFN_GATE_EXP, + MODEL_TENSOR.FFN_DOWN_EXP, + MODEL_TENSOR.FFN_UP_EXP, + MODEL_TENSOR.FFN_GATE_SHEXP, + MODEL_TENSOR.FFN_DOWN_SHEXP, + MODEL_TENSOR.FFN_UP_SHEXP, + MODEL_TENSOR.NEXTN_EH_PROJ, + MODEL_TENSOR.NEXTN_EMBED_TOKENS, + MODEL_TENSOR.NEXTN_ENORM, + MODEL_TENSOR.NEXTN_HNORM, + MODEL_TENSOR.NEXTN_SHARED_HEAD_HEAD, + MODEL_TENSOR.NEXTN_SHARED_HEAD_NORM, + MODEL_TENSOR.LAYER_OUT_NORM, + ], MODEL_ARCH.DOTS1: [ MODEL_TENSOR.TOKEN_EMBD, MODEL_TENSOR.OUTPUT_NORM, diff --git a/gguf-py/gguf/gguf_writer.py b/gguf-py/gguf/gguf_writer.py index 306679e21834b..d52d4f40f7884 100644 --- a/gguf-py/gguf/gguf_writer.py +++ b/gguf-py/gguf/gguf_writer.py @@ -755,6 +755,12 @@ def add_expert_used_count(self, count: int) -> None: def add_expert_shared_count(self, count: int) -> None: self.add_uint32(Keys.LLM.EXPERT_SHARED_COUNT.format(arch=self.arch), count) + def add_expert_group_count(self, count: int) -> None: + self.add_uint32(Keys.LLM.EXPERT_GROUP_COUNT.format(arch=self.arch), count) + + def add_expert_group_used_count(self, count: int) -> None: + self.add_uint32(Keys.LLM.EXPERT_GROUP_USED_COUNT.format(arch=self.arch), count) + def add_expert_weights_scale(self, value: float) -> None: self.add_float32(Keys.LLM.EXPERT_WEIGHTS_SCALE.format(arch=self.arch), value) diff --git a/gguf-py/gguf/tensor_mapping.py b/gguf-py/gguf/tensor_mapping.py index c05aa6cc488de..d7dcd8efb8426 100644 --- a/gguf-py/gguf/tensor_mapping.py +++ b/gguf-py/gguf/tensor_mapping.py @@ -174,6 +174,7 @@ class TensorNameMap: "h.{bid}.self_attention.query_key_value", # bloom "language_model.encoder.layers.{bid}.self_attention.query_key_value", # persimmon "model.layers.{bid}.self_attn.query_key_value", # persimmon + "model.layers.{bid}.attention.query_key_value", # bailingmoe2 "h.{bid}.attn.c_attn", # gpt2 "transformer.h.{bid}.mixer.Wqkv", # phi2 "encoder.layers.{bid}.attn.Wqkv", # nomic-bert @@ -260,6 +261,7 @@ class TensorNameMap: "transformer.h.{bid}.attn.out_proj", # gpt-j "language_model.encoder.layers.{bid}.self_attention.dense", # persimmon "model.layers.{bid}.self_attn.dense", # persimmon + "model.layers.{bid}.attention.dense", # bailingmoe2 "h.{bid}.attn.c_proj", # gpt2 "transformer.h.{bid}.mixer.out_proj", # phi2 "model.layers.layers.{bid}.self_attn.o_proj", # plamo @@ -373,6 +375,7 @@ class TensorNameMap: MODEL_TENSOR.FFN_EXP_PROBS_B: ( "model.layers.{bid}.mlp.gate.e_score_correction", # deepseek-v3 dots1 "model.layers.{bid}.mlp.moe_statics.e_score_correction", # ernie4.5-moe + "model.layers.{bid}.mlp.gate.expert_bias", # bailingmoe2 "model.layers.{bid}.feed_forward.expert_bias", # lfm2moe ), @@ -549,6 +552,7 @@ class TensorNameMap: "language_model.encoder.layers.{bid}.self_attention.q_layernorm", "model.layers.{bid}.self_attn.q_layernorm", # persimmon "model.layers.{bid}.self_attn.query_layernorm", # hunyuan + "model.layers.{bid}.attention.query_layernorm", # bailingmoe2 "model.layers.{bid}.self_attn.q_norm", # cohere olmoe chameleon olmo2 "layers.{bid}.self_attn.q_norm", # embeddinggemma "transformer.blocks.{bid}.attn.q_ln", # sea-lion @@ -563,6 +567,7 @@ class TensorNameMap: "language_model.encoder.layers.{bid}.self_attention.k_layernorm", "model.layers.{bid}.self_attn.k_layernorm", # persimmon "model.layers.{bid}.self_attn.key_layernorm", # hunyuan + "model.layers.{bid}.attention.key_layernorm", # bailingmoe2 "model.layers.{bid}.self_attn.k_norm", # cohere olmoe chameleon olmo2 "layers.{bid}.self_attn.k_norm", # embeddinggemma "transformer.blocks.{bid}.attn.k_ln", # sea-lion @@ -584,6 +589,7 @@ class TensorNameMap: "transformer.decoder_layer.{bid}.rms_norm_3", # Grok "encoder.layer.{bid}.mlp.layernorm", # jina-bert-v2 "encoder.layer.{bid}.layer_norm_2", # jina-v2-code + "model.layers.{bid}.final_layernorm", # bailingmoe2 ), MODEL_TENSOR.PER_LAYER_TOKEN_EMBD: ( diff --git a/src/llama-arch.cpp b/src/llama-arch.cpp index b7e00b275b6f7..8ca769c5fd2ef 100644 --- a/src/llama-arch.cpp +++ b/src/llama-arch.cpp @@ -85,6 +85,7 @@ static const std::map LLM_ARCH_NAMES = { { LLM_ARCH_WAVTOKENIZER_DEC, "wavtokenizer-dec" }, { LLM_ARCH_PLM, "plm" }, { LLM_ARCH_BAILINGMOE, "bailingmoe" }, + { LLM_ARCH_BAILINGMOE2, "bailingmoe2" }, { LLM_ARCH_DOTS1, "dots1" }, { LLM_ARCH_ARCEE, "arcee" }, { LLM_ARCH_ERNIE4_5, "ernie4_5" }, @@ -135,6 +136,8 @@ static const std::map LLM_KV_NAMES = { { LLM_KV_EXPERT_COUNT, "%s.expert_count" }, { LLM_KV_EXPERT_USED_COUNT, "%s.expert_used_count" }, { LLM_KV_EXPERT_SHARED_COUNT, "%s.expert_shared_count" }, + { LLM_KV_EXPERT_GROUP_COUNT, "%s.expert_group_count" }, + { LLM_KV_EXPERT_GROUP_USED_COUNT, "%s.expert_group_used_count" }, { LLM_KV_EXPERT_WEIGHTS_SCALE, "%s.expert_weights_scale" }, { LLM_KV_EXPERT_WEIGHTS_NORM, "%s.expert_weights_norm" }, { LLM_KV_EXPERT_GATING_FUNC, "%s.expert_gating_func" }, @@ -1946,6 +1949,38 @@ static const std::map> LLM_TENSOR_N { LLM_TENSOR_FFN_UP_SHEXP, "blk.%d.ffn_up_shexp" }, }, }, + { + LLM_ARCH_BAILINGMOE2, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, + { LLM_TENSOR_OUTPUT, "output" }, + { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, + { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" }, + { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" }, + { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" }, + { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, + { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" }, + { LLM_TENSOR_FFN_EXP_PROBS_B, "blk.%d.exp_probs_b" }, + { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, + { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, + { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, + { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, + { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" }, + { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" }, + { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" }, + { LLM_TENSOR_FFN_GATE_SHEXP, "blk.%d.ffn_gate_shexp" }, + { LLM_TENSOR_FFN_DOWN_SHEXP, "blk.%d.ffn_down_shexp" }, + { LLM_TENSOR_FFN_UP_SHEXP, "blk.%d.ffn_up_shexp" }, + { LLM_TENSOR_NEXTN_EH_PROJ, "blk.%d.nextn.eh_proj" }, + { LLM_TENSOR_NEXTN_EMBED_TOKENS, "blk.%d.nextn.embed_tokens" }, + { LLM_TENSOR_NEXTN_ENORM, "blk.%d.nextn.enorm" }, + { LLM_TENSOR_NEXTN_HNORM, "blk.%d.nextn.hnorm" }, + { LLM_TENSOR_NEXTN_SHARED_HEAD_HEAD, "blk.%d.nextn.shared_head_head" }, + { LLM_TENSOR_NEXTN_SHARED_HEAD_NORM, "blk.%d.nextn.shared_head_norm" }, + { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" }, + }, + }, { LLM_ARCH_DOTS1, { diff --git a/src/llama-arch.h b/src/llama-arch.h index c41de89859d5c..dea725c1a753a 100644 --- a/src/llama-arch.h +++ b/src/llama-arch.h @@ -89,6 +89,7 @@ enum llm_arch { LLM_ARCH_WAVTOKENIZER_DEC, LLM_ARCH_PLM, LLM_ARCH_BAILINGMOE, + LLM_ARCH_BAILINGMOE2, LLM_ARCH_DOTS1, LLM_ARCH_ARCEE, LLM_ARCH_ERNIE4_5, @@ -139,6 +140,8 @@ enum llm_kv { LLM_KV_EXPERT_COUNT, LLM_KV_EXPERT_USED_COUNT, LLM_KV_EXPERT_SHARED_COUNT, + LLM_KV_EXPERT_GROUP_COUNT, + LLM_KV_EXPERT_GROUP_USED_COUNT, LLM_KV_EXPERT_WEIGHTS_SCALE, LLM_KV_EXPERT_WEIGHTS_NORM, LLM_KV_EXPERT_GATING_FUNC, diff --git a/src/llama-batch.h b/src/llama-batch.h index d563adc66aaf5..0dc8cebd2a7b3 100644 --- a/src/llama-batch.h +++ b/src/llama-batch.h @@ -123,7 +123,7 @@ class llama_batch_allocr { uint32_t n_seq_max; uint32_t n_outputs; - std::array seq_id_0 = { 0 }; // default sequence id + std::array seq_id_0 = {{ 0 }}; // default sequence id std::vector pos; std::vector n_seq_id; diff --git a/src/llama-chat.cpp b/src/llama-chat.cpp index 956c4e085e5b6..0285006d73caa 100644 --- a/src/llama-chat.cpp +++ b/src/llama-chat.cpp @@ -63,6 +63,8 @@ static const std::map LLM_CHAT_TEMPLATES = { { "megrez", LLM_CHAT_TEMPLATE_MEGREZ }, { "yandex", LLM_CHAT_TEMPLATE_YANDEX }, { "bailing", LLM_CHAT_TEMPLATE_BAILING }, + { "bailing-think", LLM_CHAT_TEMPLATE_BAILING_THINK }, + { "bailing2", LLM_CHAT_TEMPLATE_BAILING2 }, { "llama4", LLM_CHAT_TEMPLATE_LLAMA4 }, { "smolvlm", LLM_CHAT_TEMPLATE_SMOLVLM }, { "hunyuan-moe", LLM_CHAT_TEMPLATE_HUNYUAN_MOE }, @@ -191,6 +193,10 @@ llm_chat_template llm_chat_detect_template(const std::string & tmpl) { return LLM_CHAT_TEMPLATE_YANDEX; } else if (tmpl_contains("ASSISTANT") && tmpl_contains("'HUMAN'")) { return LLM_CHAT_TEMPLATE_BAILING; + } else if (tmpl_contains("ASSISTANT") && tmpl_contains("\"HUMAN\"") && tmpl_contains("")) { + return LLM_CHAT_TEMPLATE_BAILING_THINK; + } else if (tmpl_contains("ASSISTANT") && tmpl_contains("HUMAN") && tmpl_contains("<|role_end|>")) { + return LLM_CHAT_TEMPLATE_BAILING2; } else if (tmpl_contains("<|header_start|>") && tmpl_contains("<|header_end|>")) { return LLM_CHAT_TEMPLATE_LLAMA4; } else if (tmpl_contains("<|endofuserprompt|>")) { @@ -644,8 +650,8 @@ int32_t llm_chat_apply_template( if (add_ass) { ss << " Ассистент:[SEP]"; } - } else if (tmpl == LLM_CHAT_TEMPLATE_BAILING) { - // Bailing (Ling) template + } else if (tmpl == LLM_CHAT_TEMPLATE_BAILING || tmpl == LLM_CHAT_TEMPLATE_BAILING_THINK) { + // Bailing (Ling/Ring) template for (auto message : chat) { std::string role(message->role); @@ -658,6 +664,33 @@ int32_t llm_chat_apply_template( ss << "" << role << "" << message->content; } + if (add_ass) { + ss << "ASSISTANT"; + + if (tmpl == LLM_CHAT_TEMPLATE_BAILING_THINK) { + ss << ""; + } + } + } else if (tmpl == LLM_CHAT_TEMPLATE_BAILING2) { + // Bailing2 (Ling 2.0) template + bool has_system = !chat.empty() && std::string(chat[0]->role) == "system"; + + if (!has_system) { + ss << "SYSTEMdetailed thinking off<|role_end|>"; + } + + for (auto message : chat) { + std::string role(message->role); + + if (role == "user") { + role = "HUMAN"; + } else { + std::transform(role.begin(), role.end(), role.begin(), ::toupper); + } + + ss << "" << role << "" << message->content << "<|role_end|>"; + } + if (add_ass) { ss << "ASSISTANT"; } diff --git a/src/llama-chat.h b/src/llama-chat.h index 5a87d9ab627bc..da1b7c47997ca 100644 --- a/src/llama-chat.h +++ b/src/llama-chat.h @@ -42,6 +42,8 @@ enum llm_chat_template { LLM_CHAT_TEMPLATE_MEGREZ, LLM_CHAT_TEMPLATE_YANDEX, LLM_CHAT_TEMPLATE_BAILING, + LLM_CHAT_TEMPLATE_BAILING_THINK, + LLM_CHAT_TEMPLATE_BAILING2, LLM_CHAT_TEMPLATE_LLAMA4, LLM_CHAT_TEMPLATE_SMOLVLM, LLM_CHAT_TEMPLATE_DOTS1, diff --git a/src/llama-context.cpp b/src/llama-context.cpp index e7526e7d0a557..bd348bcad370a 100644 --- a/src/llama-context.cpp +++ b/src/llama-context.cpp @@ -2346,7 +2346,8 @@ llama_context * llama_init_from_model( return nullptr; } - if (params.pooling_type != model->hparams.pooling_type) { + if (params.pooling_type != LLAMA_POOLING_TYPE_UNSPECIFIED && + params.pooling_type != model->hparams.pooling_type) { //user-specified pooling-type is different from the model default LLAMA_LOG_WARN("%s: model default pooling_type is [%d], but [%d] was specified\n", __func__, model->hparams.pooling_type, params.pooling_type); diff --git a/src/llama-graph.cpp b/src/llama-graph.cpp index f29a1e98c9103..41fa6894377ea 100644 --- a/src/llama-graph.cpp +++ b/src/llama-graph.cpp @@ -950,6 +950,31 @@ ggml_tensor * llm_graph_context::build_moe_ffn( cb(selection_probs, "ffn_moe_probs_biased", il); } + // select top n_group_used expert groups + // https://huggingface.co/deepseek-ai/DeepSeek-V3/blob/e815299b0bcbac849fa540c768ef21845365c9eb/modeling_deepseek.py#L440-L457 + if (hparams.n_expert_groups > 1 && n_tokens > 0) { + const int64_t n_exp_per_group = n_expert / hparams.n_expert_groups; + + // organize experts into n_expert_groups + ggml_tensor * selection_groups = ggml_reshape_3d(ctx0, selection_probs, n_exp_per_group, hparams.n_expert_groups, n_tokens); // [n_exp_per_group, n_expert_groups, n_tokens] + + ggml_tensor * group_scores = ggml_top_k(ctx0, selection_groups, 2); // [2, n_expert_groups, n_tokens] + group_scores = ggml_get_rows(ctx0, ggml_reshape_4d(ctx0, selection_groups, 1, selection_groups->ne[0], selection_groups->ne[1], selection_groups->ne[2]), group_scores); // [1, 2, n_expert_groups, n_tokens] + + // get top n_group_used expert groups + group_scores = ggml_sum_rows(ctx0, ggml_reshape_3d(ctx0, group_scores, group_scores->ne[1], group_scores->ne[2], group_scores->ne[3])); // [1, n_expert_groups, n_tokens] + group_scores = ggml_reshape_2d(ctx0, group_scores, group_scores->ne[1], group_scores->ne[2]); // [n_expert_groups, n_tokens] + + ggml_tensor * expert_groups = ggml_top_k(ctx0, group_scores, hparams.n_group_used); // [n_group_used, n_tokens] + cb(expert_groups, "ffn_moe_group_topk", il); + + // mask out the other groups + selection_probs = ggml_get_rows(ctx0, selection_groups, expert_groups); // [n_exp_per_group, n_group_used, n_tokens] + selection_probs = ggml_set_rows(ctx0, ggml_scale_bias(ctx0, selection_groups, 0.0f, -INFINITY), selection_probs, expert_groups); // [n_exp_per_group, n_expert_groups, n_tokens] + selection_probs = ggml_reshape_2d(ctx0, selection_probs, n_expert, n_tokens); // [n_expert, n_tokens] + cb(selection_probs, "ffn_moe_probs_masked", il); + } + // select experts ggml_tensor * selected_experts = ggml_top_k(ctx0, selection_probs, n_expert_used); // [n_expert_used, n_tokens] cb(selected_experts->src[0], "ffn_moe_argsort", il); @@ -981,6 +1006,11 @@ ggml_tensor * llm_graph_context::build_moe_ffn( ggml_tensor * weights_sum = ggml_sum_rows(ctx0, weights); // [1, n_tokens] cb(weights_sum, "ffn_moe_weights_sum", il); + if (arch == LLM_ARCH_BAILINGMOE2) { + weights_sum = ggml_scale_bias(ctx0, weights_sum, 1.0, 1e-20); + cb(weights_sum, "ffn_moe_weights_sum_biased", il); + } + weights = ggml_div(ctx0, weights, weights_sum); // [n_expert_used, n_tokens] cb(weights, "ffn_moe_weights_norm", il); diff --git a/src/llama-hparams.h b/src/llama-hparams.h index 4e7f73ec234c3..6fcf91b7daa47 100644 --- a/src/llama-hparams.h +++ b/src/llama-hparams.h @@ -72,6 +72,8 @@ struct llama_hparams { uint32_t n_ff_chexp = 0; uint32_t n_expert_shared = 0; uint32_t n_norm_groups = 0; + uint32_t n_expert_groups = 0; + uint32_t n_group_used = 0; uint32_t n_group_experts = 0; float expert_group_scale = 0.05f; diff --git a/src/llama-model.cpp b/src/llama-model.cpp index 909b49e8e6450..e460996330080 100644 --- a/src/llama-model.cpp +++ b/src/llama-model.cpp @@ -116,8 +116,10 @@ const char * llm_type_name(llm_type type) { case LLM_TYPE_A13B: return "A13B"; case LLM_TYPE_7B_A1B: return "7B.A1B"; case LLM_TYPE_8B_A1B: return "8B.A1B"; + case LLM_TYPE_16B_A1B: return "16B.A1B"; case LLM_TYPE_21B_A3B: return "21B.A3B"; case LLM_TYPE_30B_A3B: return "30B.A3B"; + case LLM_TYPE_100B_A6B: return "100B.A6B"; case LLM_TYPE_106B_A12B: return "106B.A12B"; case LLM_TYPE_235B_A22B: return "235B.A22B"; case LLM_TYPE_300B_A47B: return "300B.A47B"; @@ -481,11 +483,13 @@ void llama_model::load_hparams(llama_model_loader & ml) { return; } - ml.get_key(LLM_KV_CONTEXT_LENGTH, hparams.n_ctx_train); - ml.get_key(LLM_KV_EMBEDDING_LENGTH, hparams.n_embd); - ml.get_key(LLM_KV_BLOCK_COUNT, hparams.n_layer); - ml.get_key(LLM_KV_EXPERT_COUNT, hparams.n_expert, false); - ml.get_key(LLM_KV_EXPERT_USED_COUNT, hparams.n_expert_used, false); + ml.get_key(LLM_KV_CONTEXT_LENGTH, hparams.n_ctx_train); + ml.get_key(LLM_KV_EMBEDDING_LENGTH, hparams.n_embd); + ml.get_key(LLM_KV_BLOCK_COUNT, hparams.n_layer); + ml.get_key(LLM_KV_EXPERT_COUNT, hparams.n_expert, false); + ml.get_key(LLM_KV_EXPERT_USED_COUNT, hparams.n_expert_used, false); + ml.get_key(LLM_KV_EXPERT_GROUP_COUNT, hparams.n_expert_groups, false); + ml.get_key(LLM_KV_EXPERT_GROUP_USED_COUNT, hparams.n_group_used, false); if (arch == LLM_ARCH_WAVTOKENIZER_DEC) { ml.get_key(LLM_KV_FEATURES_LENGTH, hparams.n_embd_features); @@ -501,8 +505,15 @@ void llama_model::load_hparams(llama_model_loader & ml) { GGML_ASSERT(hparams.n_expert_used <= hparams.n_expert); if (hparams.n_expert > 0) { GGML_ASSERT(hparams.n_expert_used > 0); + GGML_ASSERT(hparams.n_expert_groups < hparams.n_expert); + if (hparams.n_expert_groups > 1) { + GGML_ASSERT(hparams.n_expert % hparams.n_expert_groups == 0); + GGML_ASSERT(hparams.n_group_used > 0); + GGML_ASSERT(hparams.n_group_used < hparams.n_expert_groups); + } } else { GGML_ASSERT(hparams.n_expert_used == 0); + GGML_ASSERT(hparams.n_expert_groups == 0); } std::fill(hparams.n_head_arr.begin(), hparams.n_head_arr.end(), 0); @@ -1888,6 +1899,29 @@ void llama_model::load_hparams(llama_model_loader & ml) { default: type = LLM_TYPE_UNKNOWN; } } break; + case LLM_ARCH_BAILINGMOE2: + { + ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); + ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead); + ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp); + ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp); + ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared); + ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale); + ml.get_key(LLM_KV_EXPERT_WEIGHTS_NORM, hparams.expert_weights_norm, false); + ml.get_key(LLM_KV_EXPERT_GATING_FUNC, hparams.expert_gating_func); + ml.get_key(LLM_KV_NEXTN_PREDICT_LAYERS, hparams.nextn_predict_layers, false); + + // TODO: when MTP is implemented, this should probably be updated if needed + hparams.n_layer_kv_from_start = hparams.n_layer - hparams.nextn_predict_layers; + + switch (hparams.n_layer) { + case 20: type = LLM_TYPE_16B_A1B; break; + case 21: type = LLM_TYPE_16B_A1B; break; + case 32: type = LLM_TYPE_100B_A6B; break; + case 33: type = LLM_TYPE_100B_A6B; break; + default: type = LLM_TYPE_UNKNOWN; + } + } break; case LLM_ARCH_DOTS1: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); @@ -5498,6 +5532,70 @@ bool llama_model::load_tensors(llama_model_loader & ml) { layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0); } } break; + case LLM_ARCH_BAILINGMOE2: + { + const int64_t n_ff_exp = hparams.n_ff_exp; + const int64_t n_expert_shared = hparams.n_expert_shared; + + tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); + + // output + output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); + output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0); + + GGML_ASSERT(n_expert > 0 && "n_expert must be > 0 for bailingmoe2"); + GGML_ASSERT(n_expert_used > 0 && "n_expert_used must be > 0 for bailingmoe2"); + + for (int i = 0; i < n_layer; ++i) { + int flags = 0; + if (hparams.nextn_predict_layers > 0 && static_cast(i) >= n_layer - hparams.nextn_predict_layers) { + // skip all tensors in the NextN layers + flags |= TENSOR_SKIP; + } + + auto & layer = layers[i]; + + layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, flags); + + layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, flags); + layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, flags); + + layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, flags); + layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, flags); + + layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, flags); + + if (static_cast(i) >= hparams.n_layer_dense_lead) { // MoE layers + const int64_t n_ff_shexp = (hparams.n_ff_shexp ? hparams.n_ff_shexp : n_ff_exp) * n_expert_shared; + + layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, flags); + layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert}, TENSOR_NOT_REQUIRED | flags); + + layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, flags); + layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, flags); + layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, flags); + + layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_shexp}, flags); + layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {n_ff_shexp, n_embd}, flags); + layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_shexp}, flags); + } else { // Dense layers + layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, flags); + layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, flags); + layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, flags); + } + + // NextN/MTP tensors (preserved but unused) - conditionally load for last nextn_predict_layers + if (hparams.nextn_predict_layers > 0 && static_cast(i) >= n_layer - hparams.nextn_predict_layers) { + layer.nextn.eh_proj = create_tensor(tn(LLM_TENSOR_NEXTN_EH_PROJ, "weight", i), { 2 * n_embd, n_embd }, flags); + layer.nextn.embed_tokens = create_tensor(tn(LLM_TENSOR_NEXTN_EMBED_TOKENS, "weight", i), { n_embd, n_vocab }, TENSOR_NOT_REQUIRED | flags); + layer.nextn.enorm = create_tensor(tn(LLM_TENSOR_NEXTN_ENORM, "weight", i), { n_embd }, flags); + layer.nextn.hnorm = create_tensor(tn(LLM_TENSOR_NEXTN_HNORM, "weight", i), { n_embd }, flags); + layer.nextn.shared_head_head = create_tensor(tn(LLM_TENSOR_NEXTN_SHARED_HEAD_HEAD, "weight", i), { n_embd, n_vocab }, TENSOR_NOT_REQUIRED | flags); + layer.nextn.shared_head_norm = create_tensor(tn(LLM_TENSOR_NEXTN_SHARED_HEAD_NORM, "weight", i), { n_embd }, TENSOR_NOT_REQUIRED | flags); + layer.layer_out_norm = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd}, flags); + } + } + } break; case LLM_ARCH_DOTS1: { const int64_t n_ff_exp = hparams.n_ff_exp; @@ -6353,6 +6451,19 @@ void llama_model::print_info() const { LLAMA_LOG_INFO("%s: expert_weights_norm = %d\n", __func__, hparams.expert_weights_norm); } + if (arch == LLM_ARCH_BAILINGMOE2) { + LLAMA_LOG_INFO("%s: n_layer_dense_lead = %d\n", __func__, hparams.n_layer_dense_lead); + LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp); + LLAMA_LOG_INFO("%s: n_ff_shexp = %d\n", __func__, hparams.n_ff_shexp); + LLAMA_LOG_INFO("%s: n_expert_shared = %d\n", __func__, hparams.n_expert_shared); + LLAMA_LOG_INFO("%s: n_expert_groups = %d\n", __func__, hparams.n_expert_groups); + LLAMA_LOG_INFO("%s: n_group_used = %d\n", __func__, hparams.n_group_used); + LLAMA_LOG_INFO("%s: expert_weights_scale = %.1f\n", __func__, hparams.expert_weights_scale); + LLAMA_LOG_INFO("%s: expert_weights_norm = %d\n", __func__, hparams.expert_weights_norm); + LLAMA_LOG_INFO("%s: expert_gating_func = %s\n", __func__, llama_expert_gating_func_name((llama_expert_gating_func_type) hparams.expert_gating_func)); + LLAMA_LOG_INFO("%s: nextn_predict_layers = %d\n", __func__, hparams.nextn_predict_layers); + } + if (arch == LLM_ARCH_SMALLTHINKER || arch == LLM_ARCH_LFM2MOE) { LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp); LLAMA_LOG_INFO("%s: expert_gating_func = %s\n", __func__, llama_expert_gating_func_name((llama_expert_gating_func_type) hparams.expert_gating_func)); @@ -17042,6 +17153,150 @@ struct llm_build_bailingmoe : public llm_graph_context { } }; +struct llm_build_bailingmoe2 : public llm_graph_context { + llm_build_bailingmoe2(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) { + const int64_t n_embd_head = hparams.n_embd_head_v; + const int64_t n_embd_gqa = hparams.n_embd_v_gqa(); + + GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); + + ggml_tensor * cur; + ggml_tensor * inpL; + + inpL = build_inp_embd(model.tok_embd); + + // inp_pos - contains the positions + ggml_tensor * inp_pos = build_inp_pos(); + + auto * inp_attn = build_attn_inp_kv(); + + ggml_tensor * inp_out_ids = build_inp_out_ids(); + + const int n_transformer_layers = n_layer - hparams.nextn_predict_layers; + for (int il = 0; il < n_transformer_layers; ++il) { + ggml_tensor * inpSA = inpL; + + // norm + cur = build_norm(inpL, + model.layers[il].attn_norm, NULL, + LLM_NORM_RMS, il); + cb(cur, "attn_norm", il); + + // self_attention + { + cur = build_lora_mm(model.layers[il].wqkv, cur); + cb(cur, "wqkv", il); + + ggml_tensor * Qcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 0*sizeof(float)*(n_embd)); + ggml_tensor * Kcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd)); + ggml_tensor * Vcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)); + + Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il); + cb(Qcur, "Qcur_normed", il); + + Qcur = ggml_rope_ext( + ctx0, Qcur, inp_pos, nullptr, + n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, + ext_factor, attn_factor, beta_fast, beta_slow + ); + + Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il); + cb(Kcur, "Kcur_normed", il); + + Kcur = ggml_rope_ext( + ctx0, Kcur, inp_pos, nullptr, + n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, + ext_factor, attn_factor, beta_fast, beta_slow + ); + + cb(Qcur, "Qcur", il); + cb(Kcur, "Kcur", il); + cb(Vcur, "Vcur", il); + + cur = build_attn(inp_attn, + model.layers[il].wo, model.layers[il].bo, + Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il); + } + + if (il == n_transformer_layers - 1 && inp_out_ids) { + cur = ggml_get_rows(ctx0, cur, inp_out_ids); + inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); + } + + ggml_tensor * sa_out = ggml_add(ctx0, cur, inpSA); + cb(sa_out, "sa_out", il); + + // MoE branch + cur = build_norm(sa_out, + model.layers[il].ffn_norm, NULL, + LLM_NORM_RMS, il); + cb(cur, "ffn_norm", il); + + if (static_cast(il) < hparams.n_layer_dense_lead) { + cur = build_ffn(cur, + model.layers[il].ffn_up, NULL, NULL, + model.layers[il].ffn_gate, NULL, NULL, + model.layers[il].ffn_down, NULL, NULL, + NULL, + LLM_FFN_SILU, LLM_FFN_PAR, il); + cb(cur, "ffn_out", il); + } else { + ggml_tensor * moe_out = + build_moe_ffn(cur, + model.layers[il].ffn_gate_inp, + model.layers[il].ffn_up_exps, + model.layers[il].ffn_gate_exps, + model.layers[il].ffn_down_exps, + model.layers[il].ffn_exp_probs_b, + n_expert, n_expert_used, + LLM_FFN_SILU, hparams.expert_weights_norm, + true, hparams.expert_weights_scale, + (llama_expert_gating_func_type) hparams.expert_gating_func, + il); + cb(moe_out, "ffn_moe_out", il); + + { + ggml_tensor * ffn_shexp = build_ffn(cur, + model.layers[il].ffn_up_shexp, NULL, NULL, + model.layers[il].ffn_gate_shexp, NULL, NULL, + model.layers[il].ffn_down_shexp, NULL, NULL, + NULL, + LLM_FFN_SILU, LLM_FFN_PAR, il); + cb(ffn_shexp, "ffn_shexp", il); + + cur = ggml_add(ctx0, moe_out, ffn_shexp); + cb(cur, "ffn_out", il); + } + } + + cur = ggml_add(ctx0, cur, sa_out); + + cur = build_cvec(cur, il); + cb(cur, "l_out", il); + + // input for next layer + inpL = cur; + } + + cur = inpL; + + cur = build_norm(cur, + model.output_norm, NULL, + LLM_NORM_RMS, -1); + + cb(cur, "result_norm", -1); + res->t_embd = cur; + + // lm_head + cur = build_lora_mm(model.output, cur); + + cb(cur, "result_output", -1); + res->t_logits = cur; + + ggml_build_forward_expand(gf, cur); + } +}; + struct llm_build_dots1 : public llm_graph_context { llm_build_dots1(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) { const int64_t n_embd_head = hparams.n_embd_head_v; @@ -19838,6 +20093,10 @@ ggml_cgraph * llama_model::build_graph(const llm_graph_params & params) const { { llm = std::make_unique(*this, params); } break; + case LLM_ARCH_BAILINGMOE2: + { + llm = std::make_unique(*this, params); + } break; case LLM_ARCH_SEED_OSS: { llm = std::make_unique(*this, params); @@ -20104,6 +20363,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) { case LLM_ARCH_EXAONE: case LLM_ARCH_EXAONE4: case LLM_ARCH_MINICPM3: + case LLM_ARCH_BAILINGMOE2: case LLM_ARCH_DOTS1: case LLM_ARCH_HUNYUAN_MOE: case LLM_ARCH_OPENAI_MOE: diff --git a/src/llama-model.h b/src/llama-model.h index 05701e7d70c84..248f854101cd7 100644 --- a/src/llama-model.h +++ b/src/llama-model.h @@ -109,8 +109,10 @@ enum llm_type { LLM_TYPE_A13B, LLM_TYPE_7B_A1B, LLM_TYPE_8B_A1B, // lfm2moe + LLM_TYPE_16B_A1B, LLM_TYPE_21B_A3B, // Ernie MoE small LLM_TYPE_30B_A3B, + LLM_TYPE_100B_A6B, LLM_TYPE_106B_A12B, // GLM-4.5-Air LLM_TYPE_235B_A22B, LLM_TYPE_300B_A47B, // Ernie MoE big diff --git a/src/llama-vocab.cpp b/src/llama-vocab.cpp index 7fffd171491aa..639fecbd31745 100644 --- a/src/llama-vocab.cpp +++ b/src/llama-vocab.cpp @@ -1968,6 +1968,7 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) { clean_spaces = false; } else if ( tokenizer_pre == "bailingmoe" || + tokenizer_pre == "bailingmoe2" || tokenizer_pre == "llada-moe") { pre_type = LLAMA_VOCAB_PRE_TYPE_BAILINGMOE; clean_spaces = false; diff --git a/tests/test-backend-ops.cpp b/tests/test-backend-ops.cpp index 82bb55ea0e184..fa98db2982ce7 100644 --- a/tests/test-backend-ops.cpp +++ b/tests/test-backend-ops.cpp @@ -3759,6 +3759,130 @@ struct test_clamp : public test_case { } }; +// GGML_OP_FLOOR +struct test_floor : public test_case { + const ggml_type type; + const std::array ne; + + std::string vars() override { + return VARS_TO_STR2(type, ne); + } + + test_floor(ggml_type type = GGML_TYPE_F32, + std::array ne = {10, 2, 2, 2}) + : type(type), ne(ne) {} + + ggml_tensor * build_graph(ggml_context * ctx) override { + ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data()); + ggml_set_param(a); + ggml_set_name(a, "a"); + + ggml_tensor * out = ggml_floor(ctx, a); + ggml_set_name(out, "out"); + + return out; + } + + void initialize_tensors(ggml_context * ctx) override { + for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) { + init_tensor_uniform(t, -10.0f, 10.0f); + } + } +}; + +// GGML_OP_CEIL +struct test_ceil : public test_case { + const ggml_type type; + const std::array ne; + + std::string vars() override { + return VARS_TO_STR2(type, ne); + } + + test_ceil(ggml_type type = GGML_TYPE_F32, + std::array ne = {10, 2, 2, 2}) + : type(type), ne(ne) {} + + ggml_tensor * build_graph(ggml_context * ctx) override { + ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data()); + ggml_set_param(a); + ggml_set_name(a, "a"); + + ggml_tensor * out = ggml_ceil(ctx, a); + ggml_set_name(out, "out"); + + return out; + } + + void initialize_tensors(ggml_context * ctx) override { + for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) { + init_tensor_uniform(t, -10.0f, 10.0f); + } + } +}; + +// GGML_OP_ROUND +struct test_round : public test_case { + const ggml_type type; + const std::array ne; + + std::string vars() override { + return VARS_TO_STR2(type, ne); + } + + test_round(ggml_type type = GGML_TYPE_F32, + std::array ne = {10, 2, 2, 2}) + : type(type), ne(ne) {} + + ggml_tensor * build_graph(ggml_context * ctx) override { + ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data()); + ggml_set_param(a); + ggml_set_name(a, "a"); + + ggml_tensor * out = ggml_round(ctx, a); + ggml_set_name(out, "out"); + + return out; + } + + void initialize_tensors(ggml_context * ctx) override { + for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) { + init_tensor_uniform(t, -10.0f, 10.0f); + } + } +}; + +// GGML_OP_TRUNC +struct test_trunc : public test_case { + const ggml_type type; + const std::array ne; + + std::string vars() override { + return VARS_TO_STR2(type, ne); + } + + test_trunc(ggml_type type = GGML_TYPE_F32, + std::array ne = {10, 2, 2, 2}) + : type(type), ne(ne) {} + + ggml_tensor * build_graph(ggml_context * ctx) override { + ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data()); + ggml_set_param(a); + ggml_set_name(a, "a"); + + ggml_tensor * out = ggml_trunc(ctx, a); + ggml_set_name(out, "out"); + + return out; + } + + void initialize_tensors(ggml_context * ctx) override { + for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) { + init_tensor_uniform(t, -10.0f, 10.0f); + } + } +}; + // GGML_OP_DIAG_MASK_INF struct test_diag_mask_inf : public test_case { const ggml_type type; @@ -6585,6 +6709,10 @@ static std::vector> make_test_cases_eval() { test_cases.emplace_back(new test_cos (type)); test_cases.emplace_back(new test_clamp (type)); test_cases.emplace_back(new test_leaky_relu(type)); + test_cases.emplace_back(new test_floor (type)); + test_cases.emplace_back(new test_ceil (type)); + test_cases.emplace_back(new test_round (type)); + test_cases.emplace_back(new test_trunc (type)); test_cases.emplace_back(new test_sqr (type, {7, 1, 5, 3})); test_cases.emplace_back(new test_sqrt (type, {7, 1, 5, 3})); test_cases.emplace_back(new test_log (type, {7, 1, 5, 3})); @@ -6592,6 +6720,10 @@ static std::vector> make_test_cases_eval() { test_cases.emplace_back(new test_cos (type, {7, 1, 5, 3})); test_cases.emplace_back(new test_clamp (type, {7, 1, 5, 3})); test_cases.emplace_back(new test_leaky_relu(type, {7, 1, 5, 3})); + test_cases.emplace_back(new test_floor (type, {7, 1, 5, 3})); + test_cases.emplace_back(new test_ceil (type, {7, 1, 5, 3})); + test_cases.emplace_back(new test_round (type, {7, 1, 5, 3})); + test_cases.emplace_back(new test_trunc (type, {7, 1, 5, 3})); } test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 1, 1}, 5)); diff --git a/tools/server/public/index.html.gz b/tools/server/public/index.html.gz index c76f5778be8fe..08450a93cb3f4 100644 Binary files a/tools/server/public/index.html.gz and b/tools/server/public/index.html.gz differ diff --git a/tools/server/webui/package-lock.json b/tools/server/webui/package-lock.json index 9cd6ef9138c95..f86b9282c9bb6 100644 --- a/tools/server/webui/package-lock.json +++ b/tools/server/webui/package-lock.json @@ -50,6 +50,7 @@ "eslint-plugin-svelte": "^3.0.0", "fflate": "^0.8.2", "globals": "^16.0.0", + "http-server": "^14.1.1", "mdast": "^3.0.0", "mdsvex": "^0.12.3", "playwright": "^1.53.0", @@ -2979,6 +2980,13 @@ "node": ">=4" } }, + "node_modules/async": { + "version": "3.2.6", + "resolved": "https://registry.npmjs.org/async/-/async-3.2.6.tgz", + "integrity": "sha512-htCUDlxyyCLMgaM3xXg0C0LW2xqfuQ6p05pCEIsXuyQ+a1koYKTuBMzRNwmybfLgvJDMd0r1LTn4+E0Ti6C2AA==", + "dev": true, + "license": "MIT" + }, "node_modules/axe-core": { "version": "4.10.3", "resolved": "https://registry.npmjs.org/axe-core/-/axe-core-4.10.3.tgz", @@ -3015,6 +3023,19 @@ "dev": true, "license": "MIT" }, + "node_modules/basic-auth": { + "version": "2.0.1", + "resolved": "https://registry.npmjs.org/basic-auth/-/basic-auth-2.0.1.tgz", + "integrity": "sha512-NF+epuEdnUYVlGuhaxbbq+dvJttwLnGY+YixlXlME5KpQ5W3CnXA5cVTneY3SPbPDRkcjMbifrwmFYcClgOZeg==", + "dev": true, + "license": "MIT", + "dependencies": { + "safe-buffer": "5.1.2" + }, + "engines": { + "node": ">= 0.8" + } + }, "node_modules/better-opn": { "version": "3.0.2", "resolved": "https://registry.npmjs.org/better-opn/-/better-opn-3.0.2.tgz", @@ -3125,6 +3146,37 @@ "node": ">=8" } }, + "node_modules/call-bind-apply-helpers": { + "version": "1.0.2", + "resolved": "https://registry.npmjs.org/call-bind-apply-helpers/-/call-bind-apply-helpers-1.0.2.tgz", + "integrity": "sha512-Sp1ablJ0ivDkSzjcaJdxEunN5/XvksFJ2sMBFfq6x0ryhQV/2b/KwFe21cMpmHtPOSij8K99/wSfoEuTObmuMQ==", + "dev": true, + "license": "MIT", + "dependencies": { + "es-errors": "^1.3.0", + "function-bind": "^1.1.2" + }, + "engines": { + "node": ">= 0.4" + } + }, + "node_modules/call-bound": { + "version": "1.0.4", + "resolved": "https://registry.npmjs.org/call-bound/-/call-bound-1.0.4.tgz", + "integrity": "sha512-+ys997U96po4Kx/ABpBCqhA9EuxJaQWDQg7295H4hBphv3IZg0boBKuwYpt4YXp6MZ5AmZQnU/tyMTlRpaSejg==", + "dev": true, + "license": "MIT", + "dependencies": { + "call-bind-apply-helpers": "^1.0.2", + "get-intrinsic": "^1.3.0" + }, + "engines": { + "node": ">= 0.4" + }, + "funding": { + "url": "https://github.com/sponsors/ljharb" + } + }, "node_modules/callsites": { "version": "3.1.0", "resolved": "https://registry.npmjs.org/callsites/-/callsites-3.1.0.tgz", @@ -3335,6 +3387,16 @@ "node": ">= 0.6" } }, + "node_modules/corser": { + "version": "2.0.1", + "resolved": "https://registry.npmjs.org/corser/-/corser-2.0.1.tgz", + "integrity": "sha512-utCYNzRSQIZNPIcGZdQc92UVJYAhtGAteCFg0yRaFm8f0P+CPtyGyHXJcGXnffjCybUCEx3FQ2G7U3/o9eIkVQ==", + "dev": true, + "license": "MIT", + "engines": { + "node": ">= 0.4.0" + } + }, "node_modules/cross-spawn": { "version": "7.0.6", "resolved": "https://registry.npmjs.org/cross-spawn/-/cross-spawn-7.0.6.tgz", @@ -3520,6 +3582,21 @@ "dev": true, "license": "MIT" }, + "node_modules/dunder-proto": { + "version": "1.0.1", + "resolved": "https://registry.npmjs.org/dunder-proto/-/dunder-proto-1.0.1.tgz", + "integrity": "sha512-KIN/nDJBQRcXw0MLVhZE9iQHmG68qAVIBg9CqmUYjmQIhgij9U5MFvrqkUL5FbtyyzZuOeOt0zdeRe4UY7ct+A==", + "dev": true, + "license": "MIT", + "dependencies": { + "call-bind-apply-helpers": "^1.0.1", + "es-errors": "^1.3.0", + "gopd": "^1.2.0" + }, + "engines": { + "node": ">= 0.4" + } + }, "node_modules/enhanced-resolve": { "version": "5.18.2", "resolved": "https://registry.npmjs.org/enhanced-resolve/-/enhanced-resolve-5.18.2.tgz", @@ -3547,6 +3624,26 @@ "url": "https://github.com/fb55/entities?sponsor=1" } }, + "node_modules/es-define-property": { + "version": "1.0.1", + "resolved": "https://registry.npmjs.org/es-define-property/-/es-define-property-1.0.1.tgz", + "integrity": "sha512-e3nRfgfUZ4rNGL232gUgX06QNyyez04KdjFrF+LTRoOXmrOgFKDg4BCdsjW8EnT69eqdYGmRpJwiPVYNrCaW3g==", + "dev": true, + "license": "MIT", + "engines": { + "node": ">= 0.4" + } + }, + "node_modules/es-errors": { + "version": "1.3.0", + "resolved": "https://registry.npmjs.org/es-errors/-/es-errors-1.3.0.tgz", + "integrity": "sha512-Zf5H2Kxt2xjTvbJvP2ZWLEICxA6j+hAmMzIlypy4xcBg1vKVnx89Wy0GbS+kf5cwCVFFzdCFh2XSCFNULS6csw==", + "dev": true, + "license": "MIT", + "engines": { + "node": ">= 0.4" + } + }, "node_modules/es-module-lexer": { "version": "1.7.0", "resolved": "https://registry.npmjs.org/es-module-lexer/-/es-module-lexer-1.7.0.tgz", @@ -3554,6 +3651,19 @@ "dev": true, "license": "MIT" }, + "node_modules/es-object-atoms": { + "version": "1.1.1", + "resolved": "https://registry.npmjs.org/es-object-atoms/-/es-object-atoms-1.1.1.tgz", + "integrity": "sha512-FGgH2h8zKNim9ljj7dankFPcICIK9Cp5bm+c2gQSYePhpaG5+esrLODihIorn+Pe6FGJzWhXQotPv73jTaldXA==", + "dev": true, + "license": "MIT", + "dependencies": { + "es-errors": "^1.3.0" + }, + "engines": { + "node": ">= 0.4" + } + }, "node_modules/es-toolkit": { "version": "1.39.7", "resolved": "https://registry.npmjs.org/es-toolkit/-/es-toolkit-1.39.7.tgz", @@ -3885,6 +3995,13 @@ "node": ">=0.10.0" } }, + "node_modules/eventemitter3": { + "version": "4.0.7", + "resolved": "https://registry.npmjs.org/eventemitter3/-/eventemitter3-4.0.7.tgz", + "integrity": "sha512-8guHBZCwKnFhYdHr2ysuRWErTwhoN2X8XELRlrRwpmfeY2jjuUN4taQMsULKUVo1K4DvZl+0pgfyoysHxvmvEw==", + "dev": true, + "license": "MIT" + }, "node_modules/expect-type": { "version": "1.2.2", "resolved": "https://registry.npmjs.org/expect-type/-/expect-type-1.2.2.tgz", @@ -4058,6 +4175,27 @@ "dev": true, "license": "ISC" }, + "node_modules/follow-redirects": { + "version": "1.15.11", + "resolved": "https://registry.npmjs.org/follow-redirects/-/follow-redirects-1.15.11.tgz", + "integrity": "sha512-deG2P0JfjrTxl50XGCDyfI97ZGVCxIpfKYmfyrQ54n5FO/0gfIES8C/Psl6kWVDolizcaaxZJnTS0QSMxvnsBQ==", + "dev": true, + "funding": [ + { + "type": "individual", + "url": "https://github.com/sponsors/RubenVerborgh" + } + ], + "license": "MIT", + "engines": { + "node": ">=4.0" + }, + "peerDependenciesMeta": { + "debug": { + "optional": true + } + } + }, "node_modules/fsevents": { "version": "2.3.2", "resolved": "https://registry.npmjs.org/fsevents/-/fsevents-2.3.2.tgz", @@ -4073,6 +4211,55 @@ "node": "^8.16.0 || ^10.6.0 || >=11.0.0" } }, + "node_modules/function-bind": { + "version": "1.1.2", + "resolved": "https://registry.npmjs.org/function-bind/-/function-bind-1.1.2.tgz", + "integrity": "sha512-7XHNxH7qX9xG5mIwxkhumTox/MIRNcOgDrxWsMt2pAr23WHp6MrRlN7FBSFpCpr+oVO0F744iUgR82nJMfG2SA==", + "dev": true, + "license": "MIT", + "funding": { + "url": "https://github.com/sponsors/ljharb" + } + }, + "node_modules/get-intrinsic": { + "version": "1.3.0", + "resolved": "https://registry.npmjs.org/get-intrinsic/-/get-intrinsic-1.3.0.tgz", + "integrity": "sha512-9fSjSaos/fRIVIp+xSJlE6lfwhES7LNtKaCBIamHsjr2na1BiABJPo0mOjjz8GJDURarmCPGqaiVg5mfjb98CQ==", + "dev": true, + "license": "MIT", + "dependencies": { + "call-bind-apply-helpers": "^1.0.2", + "es-define-property": "^1.0.1", + "es-errors": "^1.3.0", + "es-object-atoms": "^1.1.1", + "function-bind": "^1.1.2", + "get-proto": "^1.0.1", + "gopd": "^1.2.0", + "has-symbols": "^1.1.0", + "hasown": "^2.0.2", + "math-intrinsics": "^1.1.0" + }, + "engines": { + "node": ">= 0.4" + }, + "funding": { + "url": "https://github.com/sponsors/ljharb" + } + }, + "node_modules/get-proto": { + "version": "1.0.1", + "resolved": "https://registry.npmjs.org/get-proto/-/get-proto-1.0.1.tgz", + "integrity": "sha512-sTSfBjoXBp89JvIKIefqw7U2CCebsc74kiY6awiGogKtoSGbgjYE/G/+l9sF3MWFPNc9IcoOC4ODfKHfxFmp0g==", + "dev": true, + "license": "MIT", + "dependencies": { + "dunder-proto": "^1.0.1", + "es-object-atoms": "^1.0.0" + }, + "engines": { + "node": ">= 0.4" + } + }, "node_modules/glob-parent": { "version": "6.0.2", "resolved": "https://registry.npmjs.org/glob-parent/-/glob-parent-6.0.2.tgz", @@ -4099,6 +4286,19 @@ "url": "https://github.com/sponsors/sindresorhus" } }, + "node_modules/gopd": { + "version": "1.2.0", + "resolved": "https://registry.npmjs.org/gopd/-/gopd-1.2.0.tgz", + "integrity": "sha512-ZUKRh6/kUFoAiTAtTYPZJ3hw9wNxx+BIBOijnlG9PnrJsCcSjs1wyyD6vJpaYtgnzDrKYRSqf3OO6Rfa93xsRg==", + "dev": true, + "license": "MIT", + "engines": { + "node": ">= 0.4" + }, + "funding": { + "url": "https://github.com/sponsors/ljharb" + } + }, "node_modules/graceful-fs": { "version": "4.2.11", "resolved": "https://registry.npmjs.org/graceful-fs/-/graceful-fs-4.2.11.tgz", @@ -4123,6 +4323,32 @@ "node": ">=8" } }, + "node_modules/has-symbols": { + "version": "1.1.0", + "resolved": "https://registry.npmjs.org/has-symbols/-/has-symbols-1.1.0.tgz", + "integrity": "sha512-1cDNdwJ2Jaohmb3sg4OmKaMBwuC48sYni5HUw2DvsC8LjGTLK9h+eb1X6RyuOHe4hT0ULCW68iomhjUoKUqlPQ==", + "dev": true, + "license": "MIT", + "engines": { + "node": ">= 0.4" + }, + "funding": { + "url": "https://github.com/sponsors/ljharb" + } + }, + "node_modules/hasown": { + "version": "2.0.2", + "resolved": "https://registry.npmjs.org/hasown/-/hasown-2.0.2.tgz", + "integrity": "sha512-0hJU9SCPvmMzIBdZFqNPXWa6dqh7WdH0cII9y+CyS8rG3nL48Bclra9HmKhVVUHyPWNH5Y7xDwAB7bfgSjkUMQ==", + "dev": true, + "license": "MIT", + "dependencies": { + "function-bind": "^1.1.2" + }, + "engines": { + "node": ">= 0.4" + } + }, "node_modules/hast-util-from-dom": { "version": "5.0.1", "resolved": "https://registry.npmjs.org/hast-util-from-dom/-/hast-util-from-dom-5.0.1.tgz", @@ -4363,6 +4589,16 @@ "url": "https://opencollective.com/unified" } }, + "node_modules/he": { + "version": "1.2.0", + "resolved": "https://registry.npmjs.org/he/-/he-1.2.0.tgz", + "integrity": "sha512-F/1DnUGPopORZi0ni+CvrCgHQ5FyEAHRLSApuYWMmrbSwoN2Mn/7k+Gl38gJnR7yyDZk6WLXwiGod1JOWNDKGw==", + "dev": true, + "license": "MIT", + "bin": { + "he": "bin/he" + } + }, "node_modules/highlight.js": { "version": "11.11.1", "resolved": "https://registry.npmjs.org/highlight.js/-/highlight.js-11.11.1.tgz", @@ -4372,6 +4608,19 @@ "node": ">=12.0.0" } }, + "node_modules/html-encoding-sniffer": { + "version": "3.0.0", + "resolved": "https://registry.npmjs.org/html-encoding-sniffer/-/html-encoding-sniffer-3.0.0.tgz", + "integrity": "sha512-oWv4T4yJ52iKrufjnyZPkrN0CH3QnrUqdB6In1g5Fe1mia8GmF36gnfNySxoZtxD5+NmYw1EElVXiBk93UeskA==", + "dev": true, + "license": "MIT", + "dependencies": { + "whatwg-encoding": "^2.0.0" + }, + "engines": { + "node": ">=12" + } + }, "node_modules/html-void-elements": { "version": "3.0.0", "resolved": "https://registry.npmjs.org/html-void-elements/-/html-void-elements-3.0.0.tgz", @@ -4382,6 +4631,62 @@ "url": "https://github.com/sponsors/wooorm" } }, + "node_modules/http-proxy": { + "version": "1.18.1", + "resolved": "https://registry.npmjs.org/http-proxy/-/http-proxy-1.18.1.tgz", + "integrity": "sha512-7mz/721AbnJwIVbnaSv1Cz3Am0ZLT/UBwkC92VlxhXv/k/BBQfM2fXElQNC27BVGr0uwUpplYPQM9LnaBMR5NQ==", + "dev": true, + "license": "MIT", + "dependencies": { + "eventemitter3": "^4.0.0", + "follow-redirects": "^1.0.0", + "requires-port": "^1.0.0" + }, + "engines": { + "node": ">=8.0.0" + } + }, + "node_modules/http-server": { + "version": "14.1.1", + "resolved": "https://registry.npmjs.org/http-server/-/http-server-14.1.1.tgz", + "integrity": "sha512-+cbxadF40UXd9T01zUHgA+rlo2Bg1Srer4+B4NwIHdaGxAGGv59nYRnGGDJ9LBk7alpS0US+J+bLLdQOOkJq4A==", + "dev": true, + "license": "MIT", + "dependencies": { + "basic-auth": "^2.0.1", + "chalk": "^4.1.2", + "corser": "^2.0.1", + "he": "^1.2.0", + "html-encoding-sniffer": "^3.0.0", + "http-proxy": "^1.18.1", + "mime": "^1.6.0", + "minimist": "^1.2.6", + "opener": "^1.5.1", + "portfinder": "^1.0.28", + "secure-compare": "3.0.1", + "union": "~0.5.0", + "url-join": "^4.0.1" + }, + "bin": { + "http-server": "bin/http-server" + }, + "engines": { + "node": ">=12" + } + }, + "node_modules/iconv-lite": { + "version": "0.6.3", + "resolved": "https://registry.npmjs.org/iconv-lite/-/iconv-lite-0.6.3.tgz", + "integrity": "sha512-4fCk79wshMdzMp2rH06qWrJE4iolqLhCUH+OiuIgU++RB0+94NlDL81atO7GX55uUKueo0txHNtvEyI6D7WdMw==", + "dev": true, + "license": "MIT", + "dependencies": { + "safer-buffer": ">= 2.1.2 < 3.0.0" + }, + "engines": { + "node": ">=0.10.0" + } + }, "node_modules/ignore": { "version": "5.3.2", "resolved": "https://registry.npmjs.org/ignore/-/ignore-5.3.2.tgz", @@ -5008,6 +5313,16 @@ "url": "https://github.com/sponsors/wooorm" } }, + "node_modules/math-intrinsics": { + "version": "1.1.0", + "resolved": "https://registry.npmjs.org/math-intrinsics/-/math-intrinsics-1.1.0.tgz", + "integrity": "sha512-/IXtbwEk5HTPyEwyKX6hGkYXxM9nbj64B+ilVJnC/R6B0pH5G4V3b0pVbL7DBj4tkhBAppbQUlf6F6Xl9LHu1g==", + "dev": true, + "license": "MIT", + "engines": { + "node": ">= 0.4" + } + }, "node_modules/mdast": { "version": "3.0.0", "resolved": "https://registry.npmjs.org/mdast/-/mdast-3.0.0.tgz", @@ -5976,6 +6291,19 @@ "url": "https://github.com/sponsors/jonschlinkert" } }, + "node_modules/mime": { + "version": "1.6.0", + "resolved": "https://registry.npmjs.org/mime/-/mime-1.6.0.tgz", + "integrity": "sha512-x0Vn8spI+wuJ1O6S7gnbaQg8Pxh4NNHb7KSINmEWKiPE4RKOplvijn+NkmYmmRgP68mc70j2EbeTFRsrswaQeg==", + "dev": true, + "license": "MIT", + "bin": { + "mime": "cli.js" + }, + "engines": { + "node": ">=4" + } + }, "node_modules/min-indent": { "version": "1.0.1", "resolved": "https://registry.npmjs.org/min-indent/-/min-indent-1.0.1.tgz", @@ -6009,6 +6337,16 @@ "node": "*" } }, + "node_modules/minimist": { + "version": "1.2.8", + "resolved": "https://registry.npmjs.org/minimist/-/minimist-1.2.8.tgz", + "integrity": "sha512-2yyAR8qBkN3YuheJanUpWC5U3bb5osDywNB8RzDVlDwDHbocAJveqqj1u8+SVD7jkWT4yvsHCpWqqWqAxb0zCA==", + "dev": true, + "license": "MIT", + "funding": { + "url": "https://github.com/sponsors/ljharb" + } + }, "node_modules/minipass": { "version": "7.1.2", "resolved": "https://registry.npmjs.org/minipass/-/minipass-7.1.2.tgz", @@ -6124,6 +6462,19 @@ "tslib": "^2.0.3" } }, + "node_modules/object-inspect": { + "version": "1.13.4", + "resolved": "https://registry.npmjs.org/object-inspect/-/object-inspect-1.13.4.tgz", + "integrity": "sha512-W67iLl4J2EXEGTbfeHCffrjDfitvLANg0UlX3wFUUSTx92KXRFegMHUVgSqE+wvhAbi4WqjGg9czysTV2Epbew==", + "dev": true, + "license": "MIT", + "engines": { + "node": ">= 0.4" + }, + "funding": { + "url": "https://github.com/sponsors/ljharb" + } + }, "node_modules/open": { "version": "8.4.2", "resolved": "https://registry.npmjs.org/open/-/open-8.4.2.tgz", @@ -6142,6 +6493,16 @@ "url": "https://github.com/sponsors/sindresorhus" } }, + "node_modules/opener": { + "version": "1.5.2", + "resolved": "https://registry.npmjs.org/opener/-/opener-1.5.2.tgz", + "integrity": "sha512-ur5UIdyw5Y7yEj9wLzhqXiy6GZ3Mwx0yGI+5sMn2r0N0v3cKJvUmFH5yPP+WXh9e0xfyzyJX95D8l088DNFj7A==", + "dev": true, + "license": "(WTFPL OR MIT)", + "bin": { + "opener": "bin/opener-bin.js" + } + }, "node_modules/optionator": { "version": "0.9.4", "resolved": "https://registry.npmjs.org/optionator/-/optionator-0.9.4.tgz", @@ -6330,6 +6691,20 @@ "node": ">=18" } }, + "node_modules/portfinder": { + "version": "1.0.38", + "resolved": "https://registry.npmjs.org/portfinder/-/portfinder-1.0.38.tgz", + "integrity": "sha512-rEwq/ZHlJIKw++XtLAO8PPuOQA/zaPJOZJ37BVuN97nLpMJeuDVLVGRwbFoBgLudgdTMP2hdRJP++H+8QOA3vg==", + "dev": true, + "license": "MIT", + "dependencies": { + "async": "^3.2.6", + "debug": "^4.3.6" + }, + "engines": { + "node": ">= 10.12" + } + }, "node_modules/postcss": { "version": "8.5.6", "resolved": "https://registry.npmjs.org/postcss/-/postcss-8.5.6.tgz", @@ -6680,6 +7055,22 @@ "node": ">=6" } }, + "node_modules/qs": { + "version": "6.14.0", + "resolved": "https://registry.npmjs.org/qs/-/qs-6.14.0.tgz", + "integrity": "sha512-YWWTjgABSKcvs/nWBi9PycY/JiPJqOD4JA6o9Sej2AtvSGarXxKC3OQSk4pAarbdQlKAh5D4FCQkJNkW+GAn3w==", + "dev": true, + "license": "BSD-3-Clause", + "dependencies": { + "side-channel": "^1.1.0" + }, + "engines": { + "node": ">=0.6" + }, + "funding": { + "url": "https://github.com/sponsors/ljharb" + } + }, "node_modules/queue-microtask": { "version": "1.2.3", "resolved": "https://registry.npmjs.org/queue-microtask/-/queue-microtask-1.2.3.tgz", @@ -6959,6 +7350,13 @@ "url": "https://opencollective.com/unified" } }, + "node_modules/requires-port": { + "version": "1.0.0", + "resolved": "https://registry.npmjs.org/requires-port/-/requires-port-1.0.0.tgz", + "integrity": "sha512-KigOCHcocU3XODJxsu8i/j8T9tzT4adHiecwORRQ0ZZFcp7ahwXuRU1m+yuO90C5ZUyGeGfocHDI14M3L3yDAQ==", + "dev": true, + "license": "MIT" + }, "node_modules/resolve-from": { "version": "4.0.0", "resolved": "https://registry.npmjs.org/resolve-from/-/resolve-from-4.0.0.tgz", @@ -7072,6 +7470,20 @@ "node": ">=6" } }, + "node_modules/safe-buffer": { + "version": "5.1.2", + "resolved": "https://registry.npmjs.org/safe-buffer/-/safe-buffer-5.1.2.tgz", + "integrity": "sha512-Gd2UZBJDkXlY7GbJxfsE8/nvKkUEU1G38c1siN6QP6a9PT9MmHB8GnpscSmMJSoF8LOIrt8ud/wPtojys4G6+g==", + "dev": true, + "license": "MIT" + }, + "node_modules/safer-buffer": { + "version": "2.1.2", + "resolved": "https://registry.npmjs.org/safer-buffer/-/safer-buffer-2.1.2.tgz", + "integrity": "sha512-YZo3K82SD7Riyi0E1EQPojLz7kpepnSQI9IyPbHHg1XXXevb5dJI7tpyN2ADxGcQbHG7vcyRHk0cbwqcQriUtg==", + "dev": true, + "license": "MIT" + }, "node_modules/scheduler": { "version": "0.26.0", "resolved": "https://registry.npmjs.org/scheduler/-/scheduler-0.26.0.tgz", @@ -7079,6 +7491,13 @@ "dev": true, "license": "MIT" }, + "node_modules/secure-compare": { + "version": "3.0.1", + "resolved": "https://registry.npmjs.org/secure-compare/-/secure-compare-3.0.1.tgz", + "integrity": "sha512-AckIIV90rPDcBcglUwXPF3kg0P0qmPsPXAj6BBEENQE1p5yA1xfmDJzfi1Tappj37Pv2mVbKpL3Z1T+Nn7k1Qw==", + "dev": true, + "license": "MIT" + }, "node_modules/semver": { "version": "7.7.2", "resolved": "https://registry.npmjs.org/semver/-/semver-7.7.2.tgz", @@ -7122,6 +7541,82 @@ "node": ">=8" } }, + "node_modules/side-channel": { + "version": "1.1.0", + "resolved": "https://registry.npmjs.org/side-channel/-/side-channel-1.1.0.tgz", + "integrity": "sha512-ZX99e6tRweoUXqR+VBrslhda51Nh5MTQwou5tnUDgbtyM0dBgmhEDtWGP/xbKn6hqfPRHujUNwz5fy/wbbhnpw==", + "dev": true, + "license": "MIT", + "dependencies": { + "es-errors": "^1.3.0", + "object-inspect": "^1.13.3", + "side-channel-list": "^1.0.0", + "side-channel-map": "^1.0.1", + "side-channel-weakmap": "^1.0.2" + }, + "engines": { + "node": ">= 0.4" + }, + "funding": { + "url": "https://github.com/sponsors/ljharb" + } + }, + "node_modules/side-channel-list": { + "version": "1.0.0", + "resolved": "https://registry.npmjs.org/side-channel-list/-/side-channel-list-1.0.0.tgz", + "integrity": "sha512-FCLHtRD/gnpCiCHEiJLOwdmFP+wzCmDEkc9y7NsYxeF4u7Btsn1ZuwgwJGxImImHicJArLP4R0yX4c2KCrMrTA==", + "dev": true, + "license": "MIT", + "dependencies": { + "es-errors": "^1.3.0", + "object-inspect": "^1.13.3" + }, + "engines": { + "node": ">= 0.4" + }, + "funding": { + "url": "https://github.com/sponsors/ljharb" + } + }, + "node_modules/side-channel-map": { + "version": "1.0.1", + "resolved": "https://registry.npmjs.org/side-channel-map/-/side-channel-map-1.0.1.tgz", + "integrity": "sha512-VCjCNfgMsby3tTdo02nbjtM/ewra6jPHmpThenkTYh8pG9ucZ/1P8So4u4FGBek/BjpOVsDCMoLA/iuBKIFXRA==", + "dev": true, + "license": "MIT", + "dependencies": { + "call-bound": "^1.0.2", + "es-errors": "^1.3.0", + "get-intrinsic": "^1.2.5", + "object-inspect": "^1.13.3" + }, + "engines": { + "node": ">= 0.4" + }, + "funding": { + "url": "https://github.com/sponsors/ljharb" + } + }, + "node_modules/side-channel-weakmap": { + "version": "1.0.2", + "resolved": "https://registry.npmjs.org/side-channel-weakmap/-/side-channel-weakmap-1.0.2.tgz", + "integrity": "sha512-WPS/HvHQTYnHisLo9McqBHOJk2FkHO/tlpvldyrnem4aeQp4hai3gythswg6p01oSoTl58rcpiFAjF2br2Ak2A==", + "dev": true, + "license": "MIT", + "dependencies": { + "call-bound": "^1.0.2", + "es-errors": "^1.3.0", + "get-intrinsic": "^1.2.5", + "object-inspect": "^1.13.3", + "side-channel-map": "^1.0.1" + }, + "engines": { + "node": ">= 0.4" + }, + "funding": { + "url": "https://github.com/sponsors/ljharb" + } + }, "node_modules/siginfo": { "version": "2.0.0", "resolved": "https://registry.npmjs.org/siginfo/-/siginfo-2.0.0.tgz", @@ -7904,6 +8399,18 @@ "integrity": "sha512-ko/gIFJRv177XgZsZcBwnqJN5x/Gien8qNOn0D5bQU/zAzVf9Zt3BlcUiLqhV9y4ARk0GbT3tnUiPNgnTXzc/Q==", "license": "MIT" }, + "node_modules/union": { + "version": "0.5.0", + "resolved": "https://registry.npmjs.org/union/-/union-0.5.0.tgz", + "integrity": "sha512-N6uOhuW6zO95P3Mel2I2zMsbsanvvtgn6jVqJv4vbVcz/JN0OkL9suomjQGmWtxJQXOCqUJvquc1sMeNz/IwlA==", + "dev": true, + "dependencies": { + "qs": "^6.4.0" + }, + "engines": { + "node": ">= 0.8.0" + } + }, "node_modules/unist-util-find-after": { "version": "5.0.0", "resolved": "https://registry.npmjs.org/unist-util-find-after/-/unist-util-find-after-5.0.0.tgz", @@ -8073,6 +8580,13 @@ "punycode": "^2.1.0" } }, + "node_modules/url-join": { + "version": "4.0.1", + "resolved": "https://registry.npmjs.org/url-join/-/url-join-4.0.1.tgz", + "integrity": "sha512-jk1+QP6ZJqyOiuEI9AEWQfju/nB2Pw466kbA0LEZljHwKeMgd9WrAEgEGxjPDD2+TNbbb37rTyhEfrCXfuKXnA==", + "dev": true, + "license": "MIT" + }, "node_modules/util-deprecate": { "version": "1.0.2", "resolved": "https://registry.npmjs.org/util-deprecate/-/util-deprecate-1.0.2.tgz", @@ -8447,6 +8961,19 @@ "dev": true, "license": "MIT" }, + "node_modules/whatwg-encoding": { + "version": "2.0.0", + "resolved": "https://registry.npmjs.org/whatwg-encoding/-/whatwg-encoding-2.0.0.tgz", + "integrity": "sha512-p41ogyeMUrw3jWclHWTQg1k05DSVXPLcVxRTYsXUk+ZooOCZLcoYgPZ/HL/D/N+uQPOtcp1me1WhBEaX02mhWg==", + "dev": true, + "license": "MIT", + "dependencies": { + "iconv-lite": "0.6.3" + }, + "engines": { + "node": ">=12" + } + }, "node_modules/which": { "version": "2.0.2", "resolved": "https://registry.npmjs.org/which/-/which-2.0.2.tgz", diff --git a/tools/server/webui/package.json b/tools/server/webui/package.json index e073cd32f07e1..376f69015261b 100644 --- a/tools/server/webui/package.json +++ b/tools/server/webui/package.json @@ -52,6 +52,7 @@ "eslint-plugin-svelte": "^3.0.0", "fflate": "^0.8.2", "globals": "^16.0.0", + "http-server": "^14.1.1", "mdast": "^3.0.0", "mdsvex": "^0.12.3", "playwright": "^1.53.0", diff --git a/tools/server/webui/playwright.config.ts b/tools/server/webui/playwright.config.ts index 90ca19b09f3ed..51688b394106a 100644 --- a/tools/server/webui/playwright.config.ts +++ b/tools/server/webui/playwright.config.ts @@ -2,8 +2,10 @@ import { defineConfig } from '@playwright/test'; export default defineConfig({ webServer: { - command: 'npm run build && npx http-server ../public -p 8181', - port: 8181 + command: 'npm run build && http-server ../public -p 8181', + port: 8181, + timeout: 120000, + reuseExistingServer: false }, testDir: 'e2e' }); diff --git a/tools/server/webui/src/app.d.ts b/tools/server/webui/src/app.d.ts index e9bb140939886..eb14d6fe45143 100644 --- a/tools/server/webui/src/app.d.ts +++ b/tools/server/webui/src/app.d.ts @@ -31,7 +31,8 @@ import type { DatabaseMessageExtraAudioFile, DatabaseMessageExtraImageFile, DatabaseMessageExtraTextFile, - DatabaseMessageExtraPdfFile + DatabaseMessageExtraPdfFile, + DatabaseMessageExtraLegacyContext } from '$lib/types/database'; import type { @@ -73,6 +74,7 @@ declare global { DatabaseMessageExtraImageFile, DatabaseMessageExtraTextFile, DatabaseMessageExtraPdfFile, + DatabaseMessageExtraLegacyContext, SettingsConfigValue, SettingsFieldConfig, SettingsConfigType, diff --git a/tools/server/webui/src/lib/components/app/chat/ChatAttachments/ChatAttachmentsList.svelte b/tools/server/webui/src/lib/components/app/chat/ChatAttachments/ChatAttachmentsList.svelte index 0007c4c0b4597..e378139d1b626 100644 --- a/tools/server/webui/src/lib/components/app/chat/ChatAttachments/ChatAttachmentsList.svelte +++ b/tools/server/webui/src/lib/components/app/chat/ChatAttachments/ChatAttachmentsList.svelte @@ -94,6 +94,17 @@ attachmentIndex: index, textContent: attachment.content }); + } else if (attachment.type === 'context') { + // Legacy format from old webui - treat as text file + items.push({ + id: `attachment-${index}`, + name: attachment.name, + type: 'text', + isImage: false, + attachment, + attachmentIndex: index, + textContent: attachment.content + }); } else if (attachment.type === 'audioFile') { items.push({ id: `attachment-${index}`, diff --git a/tools/server/webui/src/lib/components/app/chat/ChatForm/ChatForm.svelte b/tools/server/webui/src/lib/components/app/chat/ChatForm/ChatForm.svelte index 6a7c0dd366e40..67a7fff54cb6b 100644 --- a/tools/server/webui/src/lib/components/app/chat/ChatForm/ChatForm.svelte +++ b/tools/server/webui/src/lib/components/app/chat/ChatForm/ChatForm.svelte @@ -26,6 +26,7 @@ MimeTypeImage, MimeTypeText } from '$lib/enums/files'; + import { isIMEComposing } from '$lib/utils/is-ime-composing'; interface Props { class?: string; @@ -97,7 +98,7 @@ } async function handleKeydown(event: KeyboardEvent) { - if (event.key === 'Enter' && !event.shiftKey) { + if (event.key === 'Enter' && !event.shiftKey && !isIMEComposing(event)) { event.preventDefault(); if ((!message.trim() && uploadedFiles.length === 0) || disabled || isLoading) return; diff --git a/tools/server/webui/src/lib/components/app/chat/ChatMessages/ChatMessage.svelte b/tools/server/webui/src/lib/components/app/chat/ChatMessages/ChatMessage.svelte index fed0cf712695f..7ade6bc61f333 100644 --- a/tools/server/webui/src/lib/components/app/chat/ChatMessages/ChatMessage.svelte +++ b/tools/server/webui/src/lib/components/app/chat/ChatMessages/ChatMessage.svelte @@ -1,6 +1,7 @@ + + + + + + + + + Select Conversations to {mode === 'export' ? 'Export' : 'Import'} + + + + {#if mode === 'export'} + Choose which conversations you want to export. Selected conversations will be downloaded + as a JSON file. + {:else} + Choose which conversations you want to import. Selected conversations will be merged + with your existing conversations. + {/if} + + + +
+
+ + + + + {#if searchQuery} + + {/if} +
+ +
+ + {selectedIds.size} of {conversations.length} selected + {#if searchQuery} + ({filteredConversations.length} shown) + {/if} + +
+ +
+ + + + + + + + + + + + + {#if filteredConversations.length === 0} + + + + {:else} + {#each filteredConversations as conv (conv.id)} + toggleConversation(conv.id, e.shiftKey)} + > + + + + + + + {/each} + {/if} + +
+ + Conversation NameMessages
+ {#if searchQuery} + No conversations found matching "{searchQuery}" + {:else} + No conversations available + {/if} +
+ { + e.preventDefault(); + e.stopPropagation(); + toggleConversation(conv.id, e.shiftKey); + }} + /> + +
+ {conv.name || 'Untitled conversation'} +
+
+ {messageCountMap.get(conv.id) ?? 0} +
+
+
+
+ + + + + + +
+
+
diff --git a/tools/server/webui/src/lib/components/app/chat/ChatSettings/ImportExportTab.svelte b/tools/server/webui/src/lib/components/app/chat/ChatSettings/ImportExportTab.svelte new file mode 100644 index 0000000000000..19c982c7b45ea --- /dev/null +++ b/tools/server/webui/src/lib/components/app/chat/ChatSettings/ImportExportTab.svelte @@ -0,0 +1,255 @@ + + +
+
+
+

Export Conversations

+ +

+ Download all your conversations as a JSON file. This includes all messages, attachments, and + conversation history. +

+ + + + {#if showExportSummary && exportedConversations.length > 0} +
+
+ Exported {exportedConversations.length} conversation{exportedConversations.length === 1 + ? '' + : 's'} +
+ +
    + {#each exportedConversations.slice(0, 10) as conv (conv.id)} +
  • • {conv.name || 'Untitled conversation'}
  • + {/each} + + {#if exportedConversations.length > 10} +
  • + ... and {exportedConversations.length - 10} more +
  • + {/if} +
+
+ {/if} +
+ +
+

Import Conversations

+ +

+ Import one or more conversations from a previously exported JSON file. This will merge with + your existing conversations. +

+ + + + {#if showImportSummary && importedConversations.length > 0} +
+
+ Imported {importedConversations.length} conversation{importedConversations.length === 1 + ? '' + : 's'} +
+ +
    + {#each importedConversations.slice(0, 10) as conv (conv.id)} +
  • • {conv.name || 'Untitled conversation'}
  • + {/each} + + {#if importedConversations.length > 10} +
  • + ... and {importedConversations.length - 10} more +
  • + {/if} +
+
+ {/if} +
+
+
+ + (showExportDialog = false)} + onConfirm={handleExportConfirm} +/> + + (showImportDialog = false)} + onConfirm={handleImportConfirm} +/> diff --git a/tools/server/webui/src/lib/components/app/chat/ChatSidebar/ChatSidebarActions.svelte b/tools/server/webui/src/lib/components/app/chat/ChatSidebar/ChatSidebarActions.svelte index e91673e98b036..30d1f9d4b7e98 100644 --- a/tools/server/webui/src/lib/components/app/chat/ChatSidebar/ChatSidebarActions.svelte +++ b/tools/server/webui/src/lib/components/app/chat/ChatSidebar/ChatSidebarActions.svelte @@ -1,9 +1,8 @@ diff --git a/tools/server/webui/svelte.config.js b/tools/server/webui/svelte.config.js index c24f879ddaf42..f25494236bddd 100644 --- a/tools/server/webui/svelte.config.js +++ b/tools/server/webui/svelte.config.js @@ -7,6 +7,7 @@ const config = { // Consult https://svelte.dev/docs/kit/integrations // for more information about preprocessors preprocess: [vitePreprocess(), mdsvex()], + kit: { paths: { relative: true @@ -23,6 +24,7 @@ const config = { bundleStrategy: 'inline' } }, + extensions: ['.svelte', '.svx'] }; diff --git a/tools/server/webui/vite.config.ts b/tools/server/webui/vite.config.ts index 7f7ce3bed3fcc..b077e232ab043 100644 --- a/tools/server/webui/vite.config.ts +++ b/tools/server/webui/vite.config.ts @@ -75,7 +75,12 @@ function llamaCppBuildPlugin() { } export default defineConfig({ + build: { + chunkSizeWarningLimit: 3072 + }, + plugins: [tailwindcss(), sveltekit(), devtoolsJson(), llamaCppBuildPlugin()], + test: { projects: [ { @@ -123,6 +128,7 @@ export default defineConfig({ } ] }, + server: { proxy: { '/v1': 'http://localhost:8080',