Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion ggml/src/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -65,7 +65,7 @@ if (GGML_LTO)
endif()
endif()

if (GGML_CCACHE)
if (GGML_CCACHE AND NOT CMAKE_C_COMPILER_LAUNCHER AND NOT CMAKE_CXX_COMPILER_LAUNCHER)
find_program(GGML_CCACHE_FOUND ccache)
find_program(GGML_SCCACHE_FOUND sccache)

Expand Down
168 changes: 0 additions & 168 deletions ggml/src/ggml-cann/.clang-format

This file was deleted.

4 changes: 2 additions & 2 deletions src/llama-context.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -1317,8 +1317,8 @@ int llama_context::decode(llama_batch & inp_batch) {
n_outputs = n_outputs_new;
}

// non-causal masks do not use the KV cache
if (hparams.causal_attn) {
// find KV slot
{
kv_self_update();

// if we have enough unused cells before the current head ->
Expand Down
160 changes: 63 additions & 97 deletions src/llama-graph.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -402,120 +402,86 @@ void llm_graph_input_attn_no_cache::set_input(const llama_ubatch * ubatch) {

void llm_graph_input_attn_kv_unified::set_input(const llama_ubatch * ubatch) {
if (self_kq_mask || self_kq_mask_swa) {
// NOTE: hparams.causal_attn indicates the model is capable of generation and uses the kv cache.
if (cparams.causal_attn) {
const int64_t n_kv = kv_self->n;
const int64_t n_tokens = ubatch->n_tokens;
const int64_t n_seq_tokens = ubatch->n_seq_tokens;
const int64_t n_seqs = ubatch->n_seqs;

float * data = nullptr;
float * data_swa = nullptr;

if (self_kq_mask) {
GGML_ASSERT(ggml_backend_buffer_is_host(self_kq_mask->buffer));
data = (float *) self_kq_mask->data;
}
const int64_t n_kv = kv_self->n;
const int64_t n_tokens = ubatch->n_tokens;
const int64_t n_seq_tokens = ubatch->n_seq_tokens;
const int64_t n_seqs = ubatch->n_seqs;

if (self_kq_mask_swa) {
GGML_ASSERT(ggml_backend_buffer_is_host(self_kq_mask_swa->buffer));
data_swa = (float *) self_kq_mask_swa->data;
}
float * data = nullptr;
float * data_swa = nullptr;

// For causal attention, use only the previous KV cells
// of the correct sequence for each token of the ubatch.
// It's assumed that if a token in the batch has multiple sequences, they are equivalent.
for (int h = 0; h < 1; ++h) {
for (int s = 0; s < n_seqs; ++s) {
const llama_seq_id seq_id = ubatch->seq_id[s][0];
if (self_kq_mask) {
GGML_ASSERT(ggml_backend_buffer_is_host(self_kq_mask->buffer));
data = (float *) self_kq_mask->data;
}

for (int j = 0; j < n_seq_tokens; ++j) {
const llama_pos pos = ubatch->pos[s*n_seq_tokens + j];
if (self_kq_mask_swa) {
GGML_ASSERT(ggml_backend_buffer_is_host(self_kq_mask_swa->buffer));
data_swa = (float *) self_kq_mask_swa->data;
}

for (int i = 0; i < n_kv; ++i) {
float f;
if (!kv_self->cells[i].has_seq_id(seq_id) || kv_self->cells[i].pos > pos) {
f = -INFINITY;
// Use only the previous KV cells of the correct sequence for each token of the ubatch.
// It's assumed that if a token in the batch has multiple sequences, they are equivalent.
// Example with a cache of 10 tokens, 2 tokens populated in cache and 3 tokens in batch:
// Causal mask:
// xxx-------
// xxxx------
// xxxxx-----
// Non-causal mask:
// xxxxx-----
// xxxxx-----
// xxxxx-----
// To visualize the mask, see https://github.com/ggml-org/llama.cpp/pull/12615
for (int h = 0; h < 1; ++h) {
for (int s = 0; s < n_seqs; ++s) {
const llama_seq_id seq_id = ubatch->seq_id[s][0];

for (int j = 0; j < n_seq_tokens; ++j) {
const llama_pos pos = ubatch->pos[s*n_seq_tokens + j];
for (int i = 0; i < n_kv; ++i) {
float f;
// mask the token if:
if (!kv_self->cells[i].has_seq_id(seq_id) // not the correct sequence
|| (cparams.causal_attn && kv_self->cells[i].pos > pos) // for causal, mask future tokens
) {
f = -INFINITY;
} else {
if (hparams.use_alibi) {
f = -std::abs(kv_self->cells[i].pos - pos);
} else {
if (hparams.use_alibi) {
f = -std::abs(kv_self->cells[i].pos - pos);
} else {
f = 0.0f;
}
}

if (data) {
data[h*(n_kv*n_tokens) + s*(n_kv*n_seq_tokens) + j*n_kv + i] = f;
f = 0.0f;
}
}

// may need to cut off old tokens for sliding window
if (data_swa) {
if (pos - kv_self->cells[i].pos >= (int32_t)hparams.n_swa) {
f = -INFINITY;
}
data_swa[h*(n_kv*n_tokens) + s*(n_kv*n_seq_tokens) + j*n_kv + i] = f;
}
if (data) {
data[h*(n_kv*n_tokens) + s*(n_kv*n_seq_tokens) + j*n_kv + i] = f;
}
}
}

if (data) {
for (int i = n_tokens; i < GGML_PAD(n_tokens, GGML_KQ_MASK_PAD); ++i) {
for (int j = 0; j < n_kv; ++j) {
data[h*(n_kv*n_tokens) + i*n_kv + j] = -INFINITY;
// may need to cut off old tokens for sliding window
if (data_swa) {
if (pos - kv_self->cells[i].pos >= (int32_t)hparams.n_swa) {
f = -INFINITY;
}
data_swa[h*(n_kv*n_tokens) + s*(n_kv*n_seq_tokens) + j*n_kv + i] = f;
}
}
}
}

if (data_swa) {
for (int i = n_tokens; i < GGML_PAD(n_tokens, GGML_KQ_MASK_PAD); ++i) {
for (int j = 0; j < n_kv; ++j) {
data_swa[h*(n_kv*n_tokens) + i*n_kv + j] = -INFINITY;
}
// mask padded tokens
if (data) {
for (int i = n_tokens; i < GGML_PAD(n_tokens, GGML_KQ_MASK_PAD); ++i) {
for (int j = 0; j < n_kv; ++j) {
data[h*(n_kv*n_tokens) + i*n_kv + j] = -INFINITY;
}
}
}
} else {
const int64_t n_tokens = ubatch->n_tokens;
const int64_t n_seq_tokens = ubatch->n_seq_tokens;
const int64_t n_seqs = ubatch->n_seqs;
// when using kv cache, the mask needs to match the kv cache size
const int64_t n_stride = n_tokens;

GGML_ASSERT(ggml_backend_buffer_is_host(self_kq_mask->buffer));

float * data = (float *) self_kq_mask->data;

for (int h = 0; h < 1; ++h) {
for (int s1 = 0; s1 < n_seqs; ++s1) {
const llama_seq_id seq_id = ubatch->seq_id[s1][0];

for (int j = 0; j < n_seq_tokens; ++j) {
const int32_t tj = s1*n_seq_tokens + j;

for (int s0 = 0; s0 < n_seqs; ++s0) {
for (int i = 0; i < n_seq_tokens; ++i) {
const int32_t ti = s0*n_seq_tokens + i;
float f = -INFINITY;

for (int s = 0; s < ubatch->n_seq_id[s0]; ++s) {
if (ubatch->seq_id[s0][s] == seq_id) {
if (hparams.use_alibi) {
f = -std::abs(ubatch->pos[ti] - ubatch->pos[tj]);
} else {
f = 0.0f;
}
break;
}
}

data[h*(n_tokens*n_tokens) + tj*n_stride + ti] = f;
}
}

for (int i = n_tokens; i < n_stride; ++i) {
data[h*(n_tokens*n_tokens) + tj*n_stride + i] = -INFINITY;
}
// mask padded tokens
if (data_swa) {
for (int i = n_tokens; i < GGML_PAD(n_tokens, GGML_KQ_MASK_PAD); ++i) {
for (int j = 0; j < n_kv; ++j) {
data_swa[h*(n_kv*n_tokens) + i*n_kv + j] = -INFINITY;
}
}
}
Expand Down
Loading
Loading