diff --git a/ci/run.sh b/ci/run.sh index 4d9c2dc482ec9..ebd662b38bf88 100755 --- a/ci/run.sh +++ b/ci/run.sh @@ -59,6 +59,8 @@ if [ ! -z ${GG_BUILD_SYCL} ]; then export ONEAPI_DEVICE_SELECTOR="level_zero:0" # Enable sysman for correct memory reporting export ZES_ENABLE_SYSMAN=1 + # to circumvent precision issues on CPY operations + export SYCL_PROGRAM_COMPILE_OPTIONS="-cl-fp32-correctly-rounded-divide-sqrt" CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_SYCL=1 -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DGGML_SYCL_F16=ON" fi diff --git a/common/minja/minja.hpp b/common/minja/minja.hpp index 1a30499e744ec..c4f40b17e65e5 100644 --- a/common/minja/minja.hpp +++ b/common/minja/minja.hpp @@ -2606,14 +2606,18 @@ inline std::shared_ptr Context::builtins() { auto & text = args.at("text"); return text.is_null() ? text : Value(strip(text.get())); })); - globals.set("lower", simple_function("lower", { "text" }, [](const std::shared_ptr &, Value & args) { - auto text = args.at("text"); - if (text.is_null()) return text; - std::string res; - auto str = text.get(); - std::transform(str.begin(), str.end(), std::back_inserter(res), ::tolower); - return Value(res); - })); + auto char_transform_function = [](const std::string & name, const std::function & fn) { + return simple_function(name, { "text" }, [=](const std::shared_ptr &, Value & args) { + auto text = args.at("text"); + if (text.is_null()) return text; + std::string res; + auto str = text.get(); + std::transform(str.begin(), str.end(), std::back_inserter(res), fn); + return Value(res); + }); + }; + globals.set("lower", char_transform_function("lower", ::tolower)); + globals.set("upper", char_transform_function("upper", ::toupper)); globals.set("default", Value::callable([=](const std::shared_ptr &, ArgumentsValue & args) { args.expectArgs("default", {2, 3}, {0, 1}); auto & value = args.args[0]; diff --git a/docs/backend/SYCL.md b/docs/backend/SYCL.md index 19fe8a9d22126..f1204dded0b11 100644 --- a/docs/backend/SYCL.md +++ b/docs/backend/SYCL.md @@ -302,6 +302,10 @@ cmake -B build -DGGML_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx - cmake --build build --config Release -j -v ``` +It is possible to come across some precision issues when running tests that stem from using faster +instructions, which can be circumvented by setting the environment variable `SYCL_PROGRAM_COMPILE_OPTIONS` +as `-cl-fp32-correctly-rounded-divide-sqrt` + #### Nvidia GPU The SYCL backend depends on [oneMath](https://github.com/uxlfoundation/oneMath) for Nvidia and AMD devices. @@ -322,6 +326,9 @@ cmake -B build -DGGML_SYCL=ON -DGGML_SYCL_TARGET=NVIDIA -DGGML_SYCL_DEVICE_ARCH= cmake --build build --config Release -j -v ``` +It is possible to come across some precision issues when running tests that stem from using faster +instructions, which can be circumvented by passing the `-fno-fast-math` flag to the compiler. + #### AMD GPU The SYCL backend depends on [oneMath](https://github.com/uxlfoundation/oneMath) for Nvidia and AMD devices. diff --git a/ggml/src/ggml-cann/acl_tensor.cpp b/ggml/src/ggml-cann/acl_tensor.cpp index d120ce6acf8a7..9b6553c500129 100644 --- a/ggml/src/ggml-cann/acl_tensor.cpp +++ b/ggml/src/ggml-cann/acl_tensor.cpp @@ -54,9 +54,7 @@ aclTensor* ggml_cann_create_tensor(const ggml_tensor* tensor, int64_t* ne, // added. int64_t acl_ne[GGML_MAX_DIMS * 2], acl_stride[GGML_MAX_DIMS * 2]; - int64_t acl_storage_len = 0; if (ne == nullptr) { - acl_storage_len = ggml_nbytes(tensor); for (int i = 0; i < GGML_MAX_DIMS; i++) { acl_ne[i] = tensor->ne[i]; // The step size of acl is in elements. @@ -65,14 +63,18 @@ aclTensor* ggml_cann_create_tensor(const ggml_tensor* tensor, int64_t* ne, } else { // With bcast for (int i = 0; i < dims; i++) { - acl_storage_len += (ne[i] - 1) * nb[i]; acl_ne[i] = ne[i]; acl_stride[i] = nb[i] / ggml_element_size(tensor); } } - // Reverse ne and stride. int64_t final_dims = (dims == 0 ? GGML_MAX_DIMS : dims); + int64_t acl_storage_len = 1; + for (int i = 0; i < final_dims; i++) { + acl_storage_len += (acl_ne[i] - 1) * acl_stride[i]; + } + + // Reverse ne and stride. std::reverse(acl_ne, acl_ne + final_dims); std::reverse(acl_stride, acl_stride + final_dims); diff --git a/ggml/src/ggml-cann/acl_tensor.h b/ggml/src/ggml-cann/acl_tensor.h index 4734a9cb8c301..93f09937efb31 100644 --- a/ggml/src/ggml-cann/acl_tensor.h +++ b/ggml/src/ggml-cann/acl_tensor.h @@ -101,14 +101,14 @@ aclTensor* ggml_cann_create_tensor(void* data_ptr, aclDataType dtype, tmp_stride[i] = nb[i] / type_size; } - std::reverse(tmp_ne, tmp_ne + dims); - std::reverse(tmp_stride, tmp_stride + dims); - - int64_t acl_storage_len = 0; + int64_t acl_storage_len = 1; for (int i = 0; i < dims; i++) { - acl_storage_len += (ne[i] - 1) * nb[i]; + acl_storage_len += (tmp_ne[i] - 1) * tmp_stride[i]; } + std::reverse(tmp_ne, tmp_ne + dims); + std::reverse(tmp_stride, tmp_stride + dims); + aclTensor* acl_tensor = aclCreateTensor(tmp_ne, dims, dtype, tmp_stride, offset / type_size, format, &acl_storage_len, 1, data_ptr); diff --git a/ggml/src/ggml-cann/aclnn_ops.cpp b/ggml/src/ggml-cann/aclnn_ops.cpp index 8482bb53761f4..f5734cbabb6c5 100644 --- a/ggml/src/ggml-cann/aclnn_ops.cpp +++ b/ggml/src/ggml-cann/aclnn_ops.cpp @@ -51,6 +51,7 @@ #include #include #include +#include #include #include @@ -358,8 +359,6 @@ void ggml_cann_sqr(ggml_backend_cann_context& ctx, ggml_tensor* dst) { void ggml_cann_clamp(ggml_backend_cann_context& ctx, ggml_tensor* dst) { ggml_tensor* src = dst->src[0]; - GGML_ASSERT(src->type == GGML_TYPE_F32); - GGML_ASSERT(dst->type == GGML_TYPE_F32); float min; float max; @@ -1090,8 +1089,6 @@ void ggml_cann_rms_norm(ggml_backend_cann_context& ctx, ggml_tensor* dst) { float eps; memcpy(&eps, dst->op_params, sizeof(float)); - GGML_ASSERT(eps > 0.0f); - uint64_t workspaceSize = 0; aclOpExecutor* executor; void* workspaceAddr = nullptr; @@ -3152,7 +3149,7 @@ void ggml_cann_rope(ggml_backend_cann_context& ctx, ggml_tensor* dst) { // TODO: use ascendc // Only test with LLAMA model. ggml_tensor* src0 = dst->src[0]; // input - ggml_tensor* src2 = dst->src[2]; // freq_factors + // ggml_tensor* src2 = dst->src[2]; // freq_factors, not used now. // param float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow; @@ -3444,3 +3441,46 @@ void ggml_cann_rope(ggml_backend_cann_context& ctx, ggml_tensor* dst) { ACL_CHECK(aclDestroyTensor(acl_sin_reshape_tensor)); ACL_CHECK(aclDestroyTensor(acl_dst)); } + + + void ggml_cann_argmax(ggml_backend_cann_context& ctx, ggml_tensor* dst){ + ggml_tensor * src0 = dst->src[0]; + + aclTensor* acl_src = ggml_cann_create_tensor(src0); + aclTensor* acl_dst = ggml_cann_create_tensor(dst, dst->ne, dst->nb, 3); + + uint64_t workspaceSize = 0; + aclOpExecutor* executor; + void* workspaceAddr = nullptr; + + ACL_CHECK(aclnnArgMaxGetWorkspaceSize(acl_src, 3, false, acl_dst, + &workspaceSize, &executor)); + if (workspaceSize > 0) { + ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize); + workspaceAddr = workspace_allocator.get(); + } + ACL_CHECK(aclnnArgMax(workspaceAddr, workspaceSize, executor, ctx.stream())); + + ACL_CHECK(aclDestroyTensor(acl_src)); + ACL_CHECK(aclDestroyTensor(acl_dst)); +} + +void ggml_cann_cos(ggml_backend_cann_context& ctx, ggml_tensor* dst){ + ggml_tensor * src0 = dst->src[0]; + + aclTensor* acl_src = ggml_cann_create_tensor(src0); + aclTensor* acl_dst = ggml_cann_create_tensor(dst); + aclnn_cos(ctx, acl_src, acl_dst); + ACL_CHECK(aclDestroyTensor(acl_src)); + ACL_CHECK(aclDestroyTensor(acl_dst)); +} + +void ggml_cann_sin(ggml_backend_cann_context& ctx, ggml_tensor* dst){ + ggml_tensor * src0 = dst->src[0]; + + aclTensor* acl_src = ggml_cann_create_tensor(src0); + aclTensor* acl_dst = ggml_cann_create_tensor(dst); + aclnn_sin(ctx, acl_src, acl_dst); + ACL_CHECK(aclDestroyTensor(acl_src)); + ACL_CHECK(aclDestroyTensor(acl_dst)); +} diff --git a/ggml/src/ggml-cann/aclnn_ops.h b/ggml/src/ggml-cann/aclnn_ops.h index 680129c76de68..1327905032944 100644 --- a/ggml/src/ggml-cann/aclnn_ops.h +++ b/ggml/src/ggml-cann/aclnn_ops.h @@ -484,6 +484,47 @@ void ggml_cann_mul_mat(ggml_backend_cann_context& ctx, ggml_tensor* dst); */ void ggml_cann_rope(ggml_backend_cann_context& ctx, ggml_tensor* dst); +/** + * @brief Computes the index of the maximum value along the specified dimension + * of a ggml tensor using the CANN backend. + * + * @details This function performs an argmax operation on the input tensor. + * It finds the index of the maximum value along the specified axis + * and stores these indices in the destination tensor `dst`. The + * operation is executed using the CANN backend for optimized performance. + * + * @param ctx The CANN context used for operations. + * @param dst The destination tensor where the indices of the maximum values will be stored. + * dst->op is `GGML_OP_ARGMAX`. + */ +void ggml_cann_argmax(ggml_backend_cann_context& ctx, ggml_tensor* dst); + +/** + * @brief Computes the cosine of each element in a ggml tensor using the CANN backend. + * + * @details This function applies the cosine function element-wise to the input tensor. + * The computed cosine values are stored in the destination tensor `dst`. + * The operation is optimized using the CANN backend for improved performance. + * + * @param ctx The CANN context used for operations. + * @param dst The destination tensor where the cosine values will be stored. + * dst->op is `GGML_OP_COS`. + */ +void ggml_cann_cos(ggml_backend_cann_context& ctx, ggml_tensor* dst); + +/** + * @brief Computes the sine of each element in a ggml tensor using the CANN backend. + * + * @details This function applies the sine function element-wise to the input tensor. + * The computed sine values are stored in the destination tensor `dst`. + * The operation is optimized using the CANN backend for improved performance. + * + * @param ctx The CANN context used for operations. + * @param dst The destination tensor where the sine values will be stored. + * dst->op is `GGML_OP_SIN`. + */ +void ggml_cann_sin(ggml_backend_cann_context& ctx, ggml_tensor* dst); + template @@ -535,9 +576,6 @@ template src[0]; - GGML_ASSERT(src->type == GGML_TYPE_F32); - GGML_ASSERT(dst->type == GGML_TYPE_F32); - aclTensor* acl_src = ggml_cann_create_tensor(src); aclTensor* acl_dst = ggml_cann_create_tensor(dst); @@ -566,9 +604,6 @@ template src[0]; - GGML_ASSERT(src->type == GGML_TYPE_F32); - GGML_ASSERT(dst->type == GGML_TYPE_F32); - aclTensor* acl_src = ggml_cann_create_tensor(src); aclTensor* acl_dst = ggml_cann_create_tensor(dst); diff --git a/ggml/src/ggml-cann/ggml-cann.cpp b/ggml/src/ggml-cann/ggml-cann.cpp index da75f77f511a8..5e790f05fbb67 100644 --- a/ggml/src/ggml-cann/ggml-cann.cpp +++ b/ggml/src/ggml-cann/ggml-cann.cpp @@ -1420,6 +1420,15 @@ static bool ggml_cann_compute_forward(ggml_backend_cann_context& ctx, case GGML_OP_ARGSORT: ggml_cann_argsort(ctx, dst); break; + case GGML_OP_ARGMAX: + ggml_cann_argmax(ctx, dst); + break; + case GGML_OP_COS: + ggml_cann_cos(ctx, dst); + break; + case GGML_OP_SIN: + ggml_cann_sin(ctx, dst); + break; default: return false; } @@ -1458,11 +1467,6 @@ static void ggml_backend_cann_free(ggml_backend_t backend) { ACL_CHECK(aclrtSynchronizeDevice()); ACL_CHECK(aclrtResetDevice(cann_ctx->device)); - // finalize when last backend freed. - if (cann_ctx->device == ggml_backend_cann_get_device_count() - 1) { - ACL_CHECK(aclFinalize()); - } - delete cann_ctx; delete backend; } @@ -1688,11 +1692,14 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev, } case GGML_OP_MUL_MAT: { switch (op->src[0]->type) { - case GGML_TYPE_Q8_0: case GGML_TYPE_F16: case GGML_TYPE_F32: - case GGML_TYPE_Q4_0: return true; + case GGML_TYPE_Q8_0: + case GGML_TYPE_Q4_0: + // only support contiguous for quantized types. + return ggml_is_contiguous(op->src[0]) && + ggml_is_contiguous(op->src[1]); default: return false; } @@ -1738,13 +1745,14 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev, } case GGML_OP_ROPE: { // TODO: with ops-test v == 1 - float * ext_factor = (float*)((int32_t*)op->op_params + 7); + float ext_factor = 0.0f; + memcpy(&ext_factor, (const float *) op->op_params + 7, sizeof(float)); // TODO: n_dims <= ne0 if (op->src[0]->ne[0] != op->op_params[1]) { return false; } // TODO: ext_factor != 0 - if (*ext_factor != 0) { + if (ext_factor != 0) { return false; } @@ -1766,6 +1774,16 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev, } return true; } + case GGML_OP_POOL_2D: { + const int32_t * opts = (const int32_t *) op->op_params; + const int k0 = opts[1]; + const int k1 = opts[2]; + const int p0 = opts[5]; + const int p1 = opts[6]; + // value of paddingH should be at most half of kernelH + // value of paddingW should be at most half of kernelW + return (p0 <= (k0 / 2)) && (p1 <= (k1 / 2)); + } case GGML_OP_DUP: case GGML_OP_IM2COL: case GGML_OP_CONCAT: @@ -1785,7 +1803,6 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev, case GGML_OP_CLAMP: case GGML_OP_DIAG_MASK_INF: case GGML_OP_SOFT_MAX: - case GGML_OP_POOL_2D: case GGML_OP_SUM_ROWS: case GGML_OP_ARGSORT: case GGML_OP_ACC: @@ -1794,6 +1811,9 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev, case GGML_OP_ARANGE: case GGML_OP_TIMESTEP_EMBEDDING: case GGML_OP_LEAKY_RELU: + case GGML_OP_ARGMAX: + case GGML_OP_COS: + case GGML_OP_SIN: return true; default: return false; diff --git a/ggml/src/ggml-cuda/common.cuh b/ggml/src/ggml-cuda/common.cuh index a718b6a128803..8284a0017d272 100644 --- a/ggml/src/ggml-cuda/common.cuh +++ b/ggml/src/ggml-cuda/common.cuh @@ -729,7 +729,13 @@ struct ggml_cuda_graph { bool disable_due_to_failed_graph_capture = false; int number_consecutive_updates = 0; std::vector ggml_graph_properties; - std::vector updated_kernel_arg; + bool use_cpy_indirection = false; + std::vector cpy_dest_ptrs; + char ** dest_ptrs_d; + int dest_ptrs_size = 0; + // Index to allow each cpy kernel to be aware of it's position within the graph + // relative to other cpy nodes. + int graph_cpynode_index = -1; #endif }; diff --git a/ggml/src/ggml-cuda/cpy.cu b/ggml/src/ggml-cuda/cpy.cu index cca2bee0b2791..1f3151e7566bd 100644 --- a/ggml/src/ggml-cuda/cpy.cu +++ b/ggml/src/ggml-cuda/cpy.cu @@ -32,16 +32,18 @@ static __device__ void cpy_1_f16_f32(const char * cxi, char * cdsti) { } template -static __global__ void cpy_f32_f16(const char * cx, char * cdst, const int ne, +static __global__ void cpy_f32_f16(const char * cx, char * cdst_direct, const int ne, const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02, const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, - const int nb12, const int nb13) { + const int nb12, const int nb13, char ** cdst_indirect, int graph_cpynode_index) { const int64_t i = blockDim.x*blockIdx.x + threadIdx.x; if (i >= ne) { return; } + char * cdst = (cdst_indirect != nullptr) ? cdst_indirect[graph_cpynode_index]: cdst_direct; + // determine indices i03/i13, i02/i12, i01/i11, i00/i10 as a function of index i of flattened tensor // then combine those indices with the corresponding byte offsets to get the total offsets const int64_t i03 = i/(ne00 * ne01 * ne02); @@ -288,16 +290,18 @@ static __device__ void cpy_blck_f32_iq4_nl(const char * cxi, char * cdsti) { } template -static __global__ void cpy_f32_q(const char * cx, char * cdst, const int ne, +static __global__ void cpy_f32_q(const char * cx, char * cdst_direct, const int ne, const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02, const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, - const int nb12, const int nb13) { + const int nb12, const int nb13, char ** cdst_indirect, int graph_cpynode_index) { const int i = (blockDim.x*blockIdx.x + threadIdx.x)*qk; if (i >= ne) { return; } + char * cdst = (cdst_indirect != nullptr) ? cdst_indirect[graph_cpynode_index]: cdst_direct; + const int i03 = i/(ne00 * ne01 * ne02); const int i02 = (i - i03*ne00*ne01*ne02 )/ (ne00*ne01); const int i01 = (i - i03*ne00*ne01*ne02 - i02*ne01*ne00) / ne00; @@ -314,16 +318,18 @@ static __global__ void cpy_f32_q(const char * cx, char * cdst, const int ne, } template -static __global__ void cpy_q_f32(const char * cx, char * cdst, const int ne, +static __global__ void cpy_q_f32(const char * cx, char * cdst_direct, const int ne, const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02, const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, - const int nb12, const int nb13) { + const int nb12, const int nb13, char ** cdst_indirect, int graph_cpynode_index) { const int i = (blockDim.x*blockIdx.x + threadIdx.x)*qk; if (i >= ne) { return; } + char * cdst = (cdst_indirect != nullptr) ? cdst_indirect[graph_cpynode_index]: cdst_direct; + const int i03 = i/(ne00 * ne01 * ne02); const int i02 = (i - i03*ne00*ne01*ne02 )/ (ne00*ne01); const int i01 = (i - i03*ne00*ne01*ne02 - i02*ne01*ne00) / ne00; @@ -339,66 +345,84 @@ static __global__ void cpy_q_f32(const char * cx, char * cdst, const int ne, cpy_blck(cx + x_offset, cdst + dst_offset); } +// Copy destination pointers to GPU to be available when pointer indirection is in use + +void ggml_cuda_cpy_dest_ptrs_copy(ggml_cuda_graph * cuda_graph, char ** host_dest_ptrs, const int host_dest_ptrs_size, cudaStream_t stream) { +#if defined(GGML_CUDA_USE_GRAPHS) || defined(GGML_HIP_GRAPHS) + if (cuda_graph->dest_ptrs_size < host_dest_ptrs_size) { // (re-)allocate GPU memory for destination pointers + CUDA_CHECK(cudaStreamSynchronize(stream)); + if (cuda_graph->dest_ptrs_d != nullptr) { + CUDA_CHECK(cudaFree(cuda_graph->dest_ptrs_d)); + } + CUDA_CHECK(cudaMalloc(&cuda_graph->dest_ptrs_d, host_dest_ptrs_size*sizeof(char *))); + cuda_graph->dest_ptrs_size = host_dest_ptrs_size; + } + // copy destination pointers to GPU + CUDA_CHECK(cudaMemcpyAsync(cuda_graph->dest_ptrs_d, host_dest_ptrs, host_dest_ptrs_size*sizeof(char *), cudaMemcpyHostToDevice, stream)); + cuda_graph->graph_cpynode_index = 0; // reset index +#endif +} + static void ggml_cpy_f16_f32_cuda( const char * cx, char * cdst, const int ne, const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02, - const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) { + const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream, char ** cdst_indirect, int & graph_cpynode_index) { const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE; cpy_f32_f16<<>> - (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13); + (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, cdst_indirect, graph_cpynode_index++); } static void ggml_cpy_f32_f32_cuda( const char * cx, char * cdst, const int ne, const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02, - const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) { + const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream, char ** cdst_indirect, int & graph_cpynode_index) { const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE; cpy_f32_f16<<>> - (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13); + (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, cdst_indirect, graph_cpynode_index++); } static void ggml_cpy_f32_f16_cuda( const char * cx, char * cdst, const int ne, const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02, - const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) { + const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream, char ** cdst_indirect, int & graph_cpynode_index) { const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE; cpy_f32_f16<<>> - (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13); + (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, cdst_indirect, graph_cpynode_index++); } static void ggml_cpy_f32_q8_0_cuda( const char * cx, char * cdst, const int ne, const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02, - const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) { + const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream, char ** cdst_indirect, int & graph_cpynode_index) { GGML_ASSERT(ne % QK8_0 == 0); const int num_blocks = ne / QK8_0; cpy_f32_q<<>> - (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13); + (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, cdst_indirect, graph_cpynode_index++); } static void ggml_cpy_q8_0_f32_cuda( const char * cx, char * cdst, const int ne, const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02, - const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) { + const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream, char ** cdst_indirect, int & graph_cpynode_index) { const int num_blocks = ne; cpy_q_f32<<>> - (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13); + (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, cdst_indirect, graph_cpynode_index++); } static void ggml_cpy_f32_q4_0_cuda( const char * cx, char * cdst, const int ne, const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02, - const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) { + const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream, char ** cdst_indirect, int & graph_cpynode_index) { GGML_ASSERT(ne % QK4_0 == 0); const int num_blocks = ne / QK4_0; cpy_f32_q<<>> - (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13); + (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, cdst_indirect, graph_cpynode_index++); } static void ggml_cpy_q4_0_f32_cuda( @@ -407,22 +431,22 @@ static void ggml_cpy_q4_0_f32_cuda( const int nb00, const int nb01, const int nb02, const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, - cudaStream_t stream) { + cudaStream_t stream, char ** cdst_indirect, int & graph_cpynode_index) { const int num_blocks = ne; cpy_q_f32, QK4_0><<>>( cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, - ne10, ne11, ne12, nb10, nb11, nb12, nb13); + ne10, ne11, ne12, nb10, nb11, nb12, nb13, cdst_indirect, graph_cpynode_index++); } static void ggml_cpy_f32_q4_1_cuda( const char * cx, char * cdst, const int ne, const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02, - const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) { + const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream, char ** cdst_indirect, int & graph_cpynode_index) { GGML_ASSERT(ne % QK4_1 == 0); const int num_blocks = ne / QK4_1; cpy_f32_q<<>> - (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13); + (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, cdst_indirect, graph_cpynode_index++); } static void ggml_cpy_q4_1_f32_cuda( @@ -431,22 +455,22 @@ static void ggml_cpy_q4_1_f32_cuda( const int nb00, const int nb01, const int nb02, const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, - cudaStream_t stream) { + cudaStream_t stream, char ** cdst_indirect, int & graph_cpynode_index) { const int num_blocks = ne; cpy_q_f32, QK4_1><<>>( cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, - ne10, ne11, ne12, nb10, nb11, nb12, nb13); + ne10, ne11, ne12, nb10, nb11, nb12, nb13, cdst_indirect, graph_cpynode_index++); } static void ggml_cpy_f32_q5_0_cuda( const char * cx, char * cdst, const int ne, const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02, - const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) { + const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream, char ** cdst_indirect, int & graph_cpynode_index) { GGML_ASSERT(ne % QK5_0 == 0); const int num_blocks = ne / QK5_0; cpy_f32_q<<>> - (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13); + (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, cdst_indirect, graph_cpynode_index++); } static void ggml_cpy_q5_0_f32_cuda( @@ -455,22 +479,22 @@ static void ggml_cpy_q5_0_f32_cuda( const int nb00, const int nb01, const int nb02, const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, - cudaStream_t stream) { + cudaStream_t stream, char ** cdst_indirect, int & graph_cpynode_index) { const int num_blocks = ne; cpy_q_f32, QK5_0><<>>( cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, - ne10, ne11, ne12, nb10, nb11, nb12, nb13); + ne10, ne11, ne12, nb10, nb11, nb12, nb13, cdst_indirect, graph_cpynode_index++); } static void ggml_cpy_f32_q5_1_cuda( const char * cx, char * cdst, const int ne, const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02, - const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) { + const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream, char ** cdst_indirect, int & graph_cpynode_index) { GGML_ASSERT(ne % QK5_1 == 0); const int num_blocks = ne / QK5_1; cpy_f32_q<<>> - (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13); + (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, cdst_indirect, graph_cpynode_index++); } static void ggml_cpy_q5_1_f32_cuda( @@ -479,32 +503,32 @@ static void ggml_cpy_q5_1_f32_cuda( const int nb00, const int nb01, const int nb02, const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, - cudaStream_t stream) { + cudaStream_t stream, char ** cdst_indirect, int & graph_cpynode_index) { const int num_blocks = ne; cpy_q_f32, QK5_1><<>>( cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, - ne10, ne11, ne12, nb10, nb11, nb12, nb13); + ne10, ne11, ne12, nb10, nb11, nb12, nb13, cdst_indirect, graph_cpynode_index++); } static void ggml_cpy_f32_iq4_nl_cuda( const char * cx, char * cdst, const int ne, const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02, - const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) { + const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream, char ** cdst_indirect, int & graph_cpynode_index) { GGML_ASSERT(ne % QK4_NL == 0); const int num_blocks = ne / QK4_NL; cpy_f32_q<<>> - (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13); + (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, cdst_indirect, graph_cpynode_index++); } static void ggml_cpy_f16_f16_cuda( const char * cx, char * cdst, const int ne, const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02, - const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) { + const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream, char ** cdst_indirect, int & graph_cpynode_index) { const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE; cpy_f32_f16<<>> - (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13); + (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, cdst_indirect, graph_cpynode_index++); } void ggml_cuda_cpy(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, ggml_tensor * src1) { @@ -541,46 +565,60 @@ void ggml_cuda_cpy(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, gg char * src0_ddc = (char *) src0->data; char * src1_ddc = (char *) src1->data; + char ** dest_ptrs_d = nullptr; + int graph_cpynode_index = -1; +#if defined(GGML_CUDA_USE_GRAPHS) || defined(GGML_HIP_GRAPHS) + if(ctx.cuda_graph->use_cpy_indirection) { + dest_ptrs_d = ctx.cuda_graph->dest_ptrs_d; + graph_cpynode_index = ctx.cuda_graph->graph_cpynode_index; + } +#endif if (src0->type == src1->type && ggml_is_contiguous(src0) && ggml_is_contiguous(src1)) { GGML_ASSERT(ggml_nbytes(src0) == ggml_nbytes(src1)); CUDA_CHECK(cudaMemcpyAsync(src1_ddc, src0_ddc, ggml_nbytes(src0), cudaMemcpyDeviceToDevice, main_stream)); } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32) { - ggml_cpy_f32_f32_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream); + ggml_cpy_f32_f32_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index); } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F16) { - ggml_cpy_f32_f16_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream); + ggml_cpy_f32_f16_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index); } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q8_0) { - ggml_cpy_f32_q8_0_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream); + ggml_cpy_f32_q8_0_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index); } else if (src0->type == GGML_TYPE_Q8_0 && src1->type == GGML_TYPE_F32) { - ggml_cpy_q8_0_f32_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream); + ggml_cpy_q8_0_f32_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index); } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q4_0) { - ggml_cpy_f32_q4_0_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream); + ggml_cpy_f32_q4_0_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index); } else if (src0->type == GGML_TYPE_Q4_0 && src1->type == GGML_TYPE_F32) { ggml_cpy_q4_0_f32_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, - nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream); + nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index); } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q4_1) { - ggml_cpy_f32_q4_1_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream); + ggml_cpy_f32_q4_1_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index); } else if (src0->type == GGML_TYPE_Q4_1 && src1->type == GGML_TYPE_F32) { ggml_cpy_q4_1_f32_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, - nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream); + nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index); } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q5_0) { - ggml_cpy_f32_q5_0_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream); + ggml_cpy_f32_q5_0_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index); } else if (src0->type == GGML_TYPE_Q5_0 && src1->type == GGML_TYPE_F32) { ggml_cpy_q5_0_f32_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, - nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream); + nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index); } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_IQ4_NL) { - ggml_cpy_f32_iq4_nl_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream); + ggml_cpy_f32_iq4_nl_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index); } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q5_1) { - ggml_cpy_f32_q5_1_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream); + ggml_cpy_f32_q5_1_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index); } else if (src0->type == GGML_TYPE_Q5_1 && src1->type == GGML_TYPE_F32) { - ggml_cpy_q5_1_f32_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream); + ggml_cpy_q5_1_f32_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index); } else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F16) { - ggml_cpy_f16_f16_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream); + ggml_cpy_f16_f16_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index); } else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32) { - ggml_cpy_f16_f32_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream); + ggml_cpy_f16_f32_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index); } else { GGML_ABORT("%s: unsupported type combination (%s to %s)\n", __func__, ggml_type_name(src0->type), ggml_type_name(src1->type)); } +#if defined(GGML_CUDA_USE_GRAPHS) || defined(GGML_HIP_GRAPHS) + if(ctx.cuda_graph->use_cpy_indirection) { + ctx.cuda_graph->graph_cpynode_index = graph_cpynode_index; + } +#endif + } void ggml_cuda_dup(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { diff --git a/ggml/src/ggml-cuda/cpy.cuh b/ggml/src/ggml-cuda/cpy.cuh index 28b06cddaa87b..6bed0564df27a 100644 --- a/ggml/src/ggml-cuda/cpy.cuh +++ b/ggml/src/ggml-cuda/cpy.cuh @@ -7,3 +7,5 @@ void ggml_cuda_cpy(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, gg void ggml_cuda_dup(ggml_backend_cuda_context & ctx, ggml_tensor * dst); void* ggml_cuda_cpy_fn(const ggml_tensor * src0, ggml_tensor * src1); + +void ggml_cuda_cpy_dest_ptrs_copy(ggml_cuda_graph * cuda_graph, char ** host_dest_ptrs, const int host_dest_ptrs_size, cudaStream_t stream); diff --git a/ggml/src/ggml-cuda/fattn.cu b/ggml/src/ggml-cuda/fattn.cu index 8edc12649aa63..7a2d1e45365af 100644 --- a/ggml/src/ggml-cuda/fattn.cu +++ b/ggml/src/ggml-cuda/fattn.cu @@ -299,7 +299,7 @@ void ggml_cuda_flash_attn_ext(ggml_backend_cuda_context & ctx, ggml_tensor * dst const bool gqa_opt_applies = ((Q->ne[2] / K->ne[2]) % 2 == 0) && mask; // The mma-based kernels have GQA-specific optimizations const bool mma_needs_data_conversion = K->type != GGML_TYPE_F16 || V->type != GGML_TYPE_F16; const bool mma_faster_for_bs1 = new_mma_available(cc) && gqa_opt_applies && cc < GGML_CUDA_CC_ADA_LOVELACE && !mma_needs_data_conversion; - const bool can_use_vector_kernel = (Q->ne[0] % (2*warp_size) == 0) && (prec == GGML_PREC_DEFAULT || Q->ne[0] <= 128); + const bool can_use_vector_kernel = Q->ne[0] % (2*warp_size) == 0; if (Q->ne[1] == 1 && can_use_vector_kernel && !mma_faster_for_bs1) { if (prec == GGML_PREC_DEFAULT) { ggml_cuda_flash_attn_ext_vec_f16(ctx, dst); diff --git a/ggml/src/ggml-cuda/ggml-cuda.cu b/ggml/src/ggml-cuda/ggml-cuda.cu index 861927654ec98..57319bafdb70a 100644 --- a/ggml/src/ggml-cuda/ggml-cuda.cu +++ b/ggml/src/ggml-cuda/ggml-cuda.cu @@ -2441,10 +2441,11 @@ static void ggml_backend_cuda_synchronize(ggml_backend_t backend) { #ifdef USE_CUDA_GRAPH static bool check_node_graph_compatibility_and_refresh_copy_ops(ggml_backend_cuda_context * cuda_ctx, ggml_cgraph * cgraph, - std::vector & ggml_cuda_cpy_fn_ptrs, bool use_cuda_graph) { + bool use_cuda_graph) { // Loop over nodes in GGML graph to obtain info needed for CUDA graph - cuda_ctx->cuda_graph->updated_kernel_arg.clear(); + cuda_ctx->cuda_graph->cpy_dest_ptrs.clear(); + for (int i = 0; i < cgraph->n_nodes; i++) { ggml_tensor * node = cgraph->nodes[i]; @@ -2476,8 +2477,11 @@ static bool check_node_graph_compatibility_and_refresh_copy_ops(ggml_backend_cud } if (node->op == GGML_OP_CPY) { - // store the copy op parameter which changes with each token. - cuda_ctx->cuda_graph->updated_kernel_arg.push_back((char **) &(node->src[1]->data)); + + // Store the pointers which are updated for each token, such that these can be sent + // to the device and accessed using indirection from CUDA graph + cuda_ctx->cuda_graph->cpy_dest_ptrs.push_back((char *) node->src[1]->data); + // store a pointer to each copy op CUDA kernel to identify it later void * ptr = ggml_cuda_cpy_fn(node->src[0], node->src[1]); if (!ptr) { @@ -2485,10 +2489,6 @@ static bool check_node_graph_compatibility_and_refresh_copy_ops(ggml_backend_cud #ifndef NDEBUG GGML_LOG_DEBUG("%s: disabling CUDA graphs due to unsupported copy op\n", __func__); #endif - } else { - if (std::find(ggml_cuda_cpy_fn_ptrs.begin(), ggml_cuda_cpy_fn_ptrs.end(), ptr) == ggml_cuda_cpy_fn_ptrs.end()) { - ggml_cuda_cpy_fn_ptrs.push_back(ptr); - } } } @@ -2497,6 +2497,12 @@ static bool check_node_graph_compatibility_and_refresh_copy_ops(ggml_backend_cud } } + if (use_cuda_graph) { + cuda_ctx->cuda_graph->use_cpy_indirection = true; + // copy pointers to GPU so they can be accessed via indirection within CUDA graph + ggml_cuda_cpy_dest_ptrs_copy(cuda_ctx->cuda_graph.get(), cuda_ctx->cuda_graph->cpy_dest_ptrs.data(), cuda_ctx->cuda_graph->cpy_dest_ptrs.size(), cuda_ctx->stream()); + } + return use_cuda_graph; } @@ -2551,51 +2557,6 @@ static bool ggml_graph_node_has_matching_properties(ggml_tensor * node, ggml_gra return true; } -static void maintain_cuda_graph(ggml_backend_cuda_context * cuda_ctx, std::vector & ggml_cuda_cpy_fn_ptrs, bool cuda_graph_update_required) { - - if (cuda_graph_update_required) { - // Extract nodes from graph - // First call with null argument gets number of nodes in graph - CUDA_CHECK(cudaGraphGetNodes(cuda_ctx->cuda_graph->graph, nullptr, &cuda_ctx->cuda_graph->num_nodes)); - // Subsequent call with non-null argument gets nodes - cuda_ctx->cuda_graph->nodes.clear(); - cuda_ctx->cuda_graph->nodes.resize(cuda_ctx->cuda_graph->num_nodes); - cuda_ctx->cuda_graph->params.clear(); - cuda_ctx->cuda_graph->params.resize(cuda_ctx->cuda_graph->num_nodes); - if (cuda_ctx->cuda_graph->num_nodes > 0) { - CUDA_CHECK(cudaGraphGetNodes(cuda_ctx->cuda_graph->graph, cuda_ctx->cuda_graph->nodes.data(), &cuda_ctx->cuda_graph->num_nodes)); - - // Loop over nodes, and extract kernel parameters from each node - for (size_t i = 0; i < cuda_ctx->cuda_graph->num_nodes; i++) { - cudaGraphNodeType node_type; - CUDA_CHECK(cudaGraphNodeGetType(cuda_ctx->cuda_graph->nodes[i], &node_type)); - if (node_type == cudaGraphNodeTypeKernel) { - cudaError_t stat = cudaGraphKernelNodeGetParams(cuda_ctx->cuda_graph->nodes[i], &cuda_ctx->cuda_graph->params[i]); // Get params using runtime - if (stat == cudaErrorInvalidDeviceFunction) { - // Fails due to incorrect handling by CUDA runtime of CUDA BLAS node. - // We don't need to update blas nodes, so clear error and move on. - (void)cudaGetLastError(); - } else { - GGML_ASSERT(stat == cudaSuccess); - } - } - } - } - } else { - // One of the arguments to the copy kernel is updated for each token, hence we need to - // replace that argument with the updated value in the CUDA graph - // on update steps, the live parameters will already be captured - int k = 0; - for (size_t i = 0; i < cuda_ctx->cuda_graph->num_nodes; i++) { - if(count(ggml_cuda_cpy_fn_ptrs.begin(), ggml_cuda_cpy_fn_ptrs.end(), cuda_ctx->cuda_graph->params[i].func) > 0) { - char ** updated_kernel_arg_ptr = cuda_ctx->cuda_graph->updated_kernel_arg.at(k++); - *(void**)cuda_ctx->cuda_graph->params[i].kernelParams[1] = *(void**)updated_kernel_arg_ptr; - CUDA_CHECK(cudaGraphKernelNodeSetParams(cuda_ctx->cuda_graph->nodes[i], &cuda_ctx->cuda_graph->params[i])); - } - } - } -} - static bool is_cuda_graph_update_required(ggml_backend_cuda_context * cuda_ctx, ggml_cgraph * cgraph) { bool cuda_graph_update_required = false; @@ -2655,8 +2616,7 @@ static void update_cuda_graph_executable(ggml_backend_cuda_context * cuda_ctx) { #endif static void evaluate_and_capture_cuda_graph(ggml_backend_cuda_context * cuda_ctx, ggml_cgraph * cgraph, - [[maybe_unused]] std::vector & ggml_cuda_cpy_fn_ptrs, bool & graph_evaluated_or_captured, bool & use_cuda_graph, - bool & cuda_graph_update_required) { + bool & graph_evaluated_or_captured, bool & use_cuda_graph, bool & cuda_graph_update_required) { while (!graph_evaluated_or_captured) { // Only perform the graph execution if CUDA graphs are not enabled, or we are capturing the graph. @@ -2706,13 +2666,9 @@ static void evaluate_and_capture_cuda_graph(ggml_backend_cuda_context * cuda_ctx if (cuda_ctx->cuda_graph->instance == nullptr) { // Create executable graph from captured graph. CUDA_CHECK(cudaGraphInstantiate(&cuda_ctx->cuda_graph->instance, cuda_ctx->cuda_graph->graph, NULL, NULL, 0)); } - - // Perform update to graph (if required for this token), and change copy parameter (required for every token) - maintain_cuda_graph(cuda_ctx, ggml_cuda_cpy_fn_ptrs, cuda_graph_update_required); - - // Update graph executable - update_cuda_graph_executable(cuda_ctx); - + if (cuda_graph_update_required) { // Update graph executable + update_cuda_graph_executable(cuda_ctx); + } // Launch graph CUDA_CHECK(cudaGraphLaunch(cuda_ctx->cuda_graph->instance, cuda_ctx->stream())); #else @@ -2726,10 +2682,6 @@ static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t backend, ggml_cuda_set_device(cuda_ctx->device); - // vector of pointers to CUDA cpy kernels, which are required to identify - // kernel parameters which need updated in the graph for each token - std::vector ggml_cuda_cpy_fn_ptrs; - #ifdef USE_CUDA_GRAPH static const bool disable_cuda_graphs_due_to_env = (getenv("GGML_CUDA_DISABLE_GRAPHS") != nullptr); @@ -2763,8 +2715,7 @@ static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t backend, if (use_cuda_graph) { cuda_graph_update_required = is_cuda_graph_update_required(cuda_ctx, cgraph); - use_cuda_graph = check_node_graph_compatibility_and_refresh_copy_ops(cuda_ctx, cgraph, - ggml_cuda_cpy_fn_ptrs, use_cuda_graph); + use_cuda_graph = check_node_graph_compatibility_and_refresh_copy_ops(cuda_ctx, cgraph, use_cuda_graph); // Disable CUDA graphs (from the next token) if the use-case is demanding too many consecutive graph updates. if (use_cuda_graph && cuda_graph_update_required) { @@ -2785,6 +2736,10 @@ static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t backend, CUDA_CHECK(cudaStreamBeginCapture(cuda_ctx->stream(), cudaStreamCaptureModeRelaxed)); } + if (!use_cuda_graph) { + cuda_ctx->cuda_graph->use_cpy_indirection = false; + } + #else bool use_cuda_graph = false; bool cuda_graph_update_required = false; @@ -2792,7 +2747,7 @@ static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t backend, bool graph_evaluated_or_captured = false; - evaluate_and_capture_cuda_graph(cuda_ctx, cgraph, ggml_cuda_cpy_fn_ptrs, graph_evaluated_or_captured, use_cuda_graph, cuda_graph_update_required); + evaluate_and_capture_cuda_graph(cuda_ctx, cgraph, graph_evaluated_or_captured, use_cuda_graph, cuda_graph_update_required); return GGML_STATUS_SUCCESS; } diff --git a/ggml/src/ggml-cuda/ssm-conv.cu b/ggml/src/ggml-cuda/ssm-conv.cu index cfe03d68ff02f..f637571963730 100644 --- a/ggml/src/ggml-cuda/ssm-conv.cu +++ b/ggml/src/ggml-cuda/ssm-conv.cu @@ -4,13 +4,14 @@ template static __global__ void ssm_conv_f32(const float * __restrict__ src0, const float * __restrict__ src1, const int src0_nb0, const int src0_nb1, const int src0_nb2, const int src1_nb1, float * __restrict__ dst, const int dst_nb0, const int dst_nb1, const int dst_nb2, - const int nc, const int ncs, const int nr, const int n_t, const int n_s) { + const int64_t n_t) { + GGML_UNUSED(src0_nb0); const int tid = threadIdx.x; const int bidx = blockIdx.x; const int bidy = blockIdx.y; - const float * x_block = (const float *) ((char *) src0 + bidx * src0_nb2 + bidy * split_d_inner * src0_nb1); - const float * w_block = (const float *) ((char *) src1 + bidy * split_d_inner * src1_nb1); + const float * x_block = (const float *) ((const char *) src0 + bidx * src0_nb2 + bidy * split_d_inner * src0_nb1); + const float * w_block = (const float *) ((const char *) src1 + bidy * split_d_inner * src1_nb1); float * y_block = (float *) ((char *) dst + bidx * dst_nb2 + bidy * split_d_inner * dst_nb0); const int stride_x = src0_nb1 / sizeof(float); @@ -21,15 +22,15 @@ static __global__ void ssm_conv_f32(const float * __restrict__ src0, const float float w[d_conv] = { 0.0f }; #pragma unroll - for (int j = 0; j < d_conv; j++) { + for (size_t j = 0; j < d_conv; j++) { w[j] = w_block[tid * stride_w + j]; } - for (int i = 0; i < n_t; i++) { + for (int64_t i = 0; i < n_t; i++) { float sumf = 0.0f; if (i == 0) { - for (int j = 0; j < d_conv; j++) { + for (size_t j = 0; j < d_conv; j++) { x[j] = x_block[tid * stride_x + j]; } } else { @@ -37,27 +38,26 @@ static __global__ void ssm_conv_f32(const float * __restrict__ src0, const float } #pragma unroll - for (int j = 0; j < d_conv; j++) { + for (size_t j = 0; j < d_conv; j++) { sumf += x[(i + j) % d_conv] * w[j]; } y_block[i * stride_y + tid] = sumf; } } -template +template static __global__ void ssm_conv_long_token_f32(const float * __restrict__ src0, const float * __restrict__ src1, const int src0_nb0, const int src0_nb1, const int src0_nb2, const int src1_nb1, float * __restrict__ dst, const int dst_nb0, - const int dst_nb1, const int dst_nb2, const int nc, const int ncs, - const int nr, const int n_t, const int n_s) { + const int dst_nb1, const int dst_nb2, const int64_t n_t) { const int tid = threadIdx.x; const int bidx = blockIdx.x; const int bidy = blockIdx.y; const int bidz = blockIdx.z; - const float * x_block = (const float *) ((char *) src0 + bidx * src0_nb2 + bidy * split_d_inner * src0_nb1 + + const float * x_block = (const float *) ((const char *) src0 + bidx * src0_nb2 + bidy * split_d_inner * src0_nb1 + bidz * split_n_t * src0_nb0); - const float * w_block = (const float *) ((char *) src1 + bidy * split_d_inner * src1_nb1); + const float * w_block = (const float *) ((const char *) src1 + bidy * split_d_inner * src1_nb1); float * y_block = (float *) ((char *) dst + bidx * dst_nb2 + bidz * split_n_t * dst_nb1 + bidy * split_d_inner * dst_nb0); @@ -69,17 +69,17 @@ static __global__ void ssm_conv_long_token_f32(const float * __restrict__ src0, float w[d_conv] = { 0.0f }; #pragma unroll - for (int j = 0; j < d_conv; j++) { + for (size_t j = 0; j < d_conv; j++) { w[j] = w_block[tid * stride_w + j]; } #pragma unroll - for (int i = 0; i < split_n_t; i++) { + for (int64_t i = 0; i < split_n_t; i++) { if (bidz * split_n_t + i < n_t) { float sumf = 0.0f; if (i == 0) { - for (int j = 0; j < d_conv; j++) { + for (size_t j = 0; j < d_conv; j++) { x[j] = x_block[tid * stride_x + j]; } } else { @@ -87,7 +87,7 @@ static __global__ void ssm_conv_long_token_f32(const float * __restrict__ src0, } #pragma unroll - for (int j = 0; j < d_conv; j++) { + for (size_t j = 0; j < d_conv; j++) { sumf += x[(i + j) % d_conv] * w[j]; } y_block[i * stride_y + tid] = sumf; @@ -97,8 +97,8 @@ static __global__ void ssm_conv_long_token_f32(const float * __restrict__ src0, static void ssm_conv_f32_cuda(const float * src0, const float * src1, const int src0_nb0, const int src0_nb1, const int src0_nb2, const int src1_nb1, float * dst, const int dst_nb0, const int dst_nb1, - const int dst_nb2, const int nc, const int ncs, const int nr, const int n_t, - const int n_s, cudaStream_t stream) { + const int dst_nb2, const int64_t nc, const int64_t nr, const int64_t n_t, + const int64_t n_s, cudaStream_t stream) { const int threads = 128; GGML_ASSERT(nr % threads == 0); @@ -106,18 +106,16 @@ static void ssm_conv_f32_cuda(const float * src0, const float * src1, const int const dim3 blocks(n_s, (nr + threads - 1) / threads, 1); if (nc == 4) { ssm_conv_f32<<>>(src0, src1, src0_nb0, src0_nb1, src0_nb2, src1_nb1, - dst, dst_nb0, dst_nb1, dst_nb2, nc, ncs, nr, n_t, - n_s); + dst, dst_nb0, dst_nb1, dst_nb2, n_t); } else { GGML_ABORT("Only support kernel size = 4 now."); } } else { if (nc == 4) { - const int split_n_t = 32; - dim3 blocks(n_s, (nr + threads - 1) / threads, (n_t + split_n_t - 1) / split_n_t); - ssm_conv_long_token_f32 - <<>>(src0, src1, src0_nb0, src0_nb1, src0_nb2, src1_nb1, dst, dst_nb0, - dst_nb1, dst_nb2, nc, ncs, nr, n_t, n_s); + const int64_t split_n_t = 32; + dim3 blocks(n_s, (nr + threads - 1) / threads, (n_t + split_n_t - 1) / split_n_t); + ssm_conv_long_token_f32<<>>( + src0, src1, src0_nb0, src0_nb1, src0_nb2, src1_nb1, dst, dst_nb0, dst_nb1, dst_nb2, n_t); } else { GGML_ABORT("Only support kernel size = 4 right now."); } @@ -128,11 +126,10 @@ void ggml_cuda_op_ssm_conv(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { const struct ggml_tensor * src0 = dst->src[0]; // conv_x const struct ggml_tensor * src1 = dst->src[1]; // conv1d.weight - const int nc = src1->ne[0]; // d_conv - const int ncs = src0->ne[0]; // d_conv - 1 + n_t - const int nr = src0->ne[1]; // d_inner - const int n_t = dst->ne[1]; // tokens per sequence - const int n_s = dst->ne[2]; // number of sequences in the batch + const int64_t nc = src1->ne[0]; // d_conv + const int64_t nr = src0->ne[1]; // d_inner + const int64_t n_t = dst->ne[1]; // tokens per sequence + const int64_t n_s = dst->ne[2]; // number of sequences in the batch GGML_ASSERT(dst->ne[0] == nr); GGML_ASSERT(src0->nb[0] == sizeof(float)); @@ -147,5 +144,5 @@ void ggml_cuda_op_ssm_conv(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { GGML_ASSERT(src0->type == GGML_TYPE_F32); GGML_ASSERT(dst->type == GGML_TYPE_F32); ssm_conv_f32_cuda(src0_d, src1_d, src0->nb[0], src0->nb[1], src0->nb[2], src1->nb[1], dst_d, dst->nb[0], dst->nb[1], - dst->nb[2], nc, ncs, nr, n_t, n_s, stream); + dst->nb[2], nc, nr, n_t, n_s, stream); } diff --git a/ggml/src/ggml-cuda/ssm-scan.cu b/ggml/src/ggml-cuda/ssm-scan.cu index 52db17cd9ae8f..37ee208c09d46 100644 --- a/ggml/src/ggml-cuda/ssm-scan.cu +++ b/ggml/src/ggml-cuda/ssm-scan.cu @@ -1,10 +1,5 @@ #include "ssm-scan.cuh" -// #include -// static __device__ void global_to_shared(const float *src, float *dst) { -// asm volatile("cp.async."); -// } - template __global__ void __launch_bounds__(splitD, 2) ssm_scan_f32(const float * __restrict__ src0, const float * __restrict__ src1, const float * __restrict__ src2, @@ -12,7 +7,9 @@ __global__ void __launch_bounds__(splitD, 2) const int src0_nb1, const int src0_nb2, const int src1_nb0, const int src1_nb1, const int src1_nb2, const int src1_nb3, const int src2_nb0, const int src2_nb1, const int src2_nb2, const int src3_nb1, const int src4_nb1, const int src4_nb2, const int src5_nb1, const int src5_nb2, - float * __restrict__ dst, const int D, const int L, const int B) { + float * __restrict__ dst, const int64_t L) { + GGML_UNUSED(src1_nb0); + GGML_UNUSED(src2_nb0); const int bidx = blockIdx.x; // split along B const int bidy = blockIdx.y; // split along D const int tid = threadIdx.x; @@ -25,12 +22,12 @@ __global__ void __launch_bounds__(splitD, 2) float * smem_A = smem; float * smem_s0 = smem_A + splitD * stride_sA; - const float * s0_block = (const float *) ((char *) src0 + bidx * src0_nb2 + bidy * splitD * src0_nb1); - const float * x_block = (const float *) ((char *) src1 + (bidx * src1_nb2) + bidy * splitD * sizeof(float)); - const float * dt_block = (const float *) ((char *) src2 + (bidx * src2_nb2) + bidy * splitD * sizeof(float)); - const float * A_block = (const float *) ((char *) src3 + bidy * splitD * src3_nb1); - const float * B_block = (const float *) ((char *) src4 + (bidx * src4_nb2)); - const float * C_block = (const float *) ((char *) src5 + (bidx * src5_nb2)); + const float * s0_block = (const float *) ((const char *) src0 + bidx * src0_nb2 + bidy * splitD * src0_nb1); + const float * x_block = (const float *) ((const char *) src1 + (bidx * src1_nb2) + bidy * splitD * sizeof(float)); + const float * dt_block = (const float *) ((const char *) src2 + (bidx * src2_nb2) + bidy * splitD * sizeof(float)); + const float * A_block = (const float *) ((const char *) src3 + bidy * splitD * src3_nb1); + const float * B_block = (const float *) ((const char *) src4 + (bidx * src4_nb2)); + const float * C_block = (const float *) ((const char *) src5 + (bidx * src5_nb2)); float * y_block = (float *) ((char *) dst + (bidx * src1_nb2) + bidy * splitD * sizeof(float)); float * s_block = (float *) ((char *) dst + src1_nb3 + bidx * src0_nb2 + bidy * splitD * src0_nb1); @@ -46,7 +43,7 @@ __global__ void __launch_bounds__(splitD, 2) // can N not be 16? for example 32? if (N == 16) { #pragma unroll - for (int i = 0; i < splitD / 4; i += 2) { + for (size_t i = 0; i < splitD / 4; i += 2) { float value = A_block[(wid * warpSize + i) * stride_A + wtid]; // todo: bank conflict // I am always confused with how to use the swizzling method to solve @@ -54,7 +51,7 @@ __global__ void __launch_bounds__(splitD, 2) smem_A[(wid * warpSize + i) * stride_sA + wtid + ((wtid / 16) > 0 ? 1 : 0)] = value; } #pragma unroll - for (int i = 0; i < splitD / 4; i += 2) { + for (size_t i = 0; i < splitD / 4; i += 2) { float value = s0_block[(wid * warpSize + i) * stride_s0 + wtid]; smem_s0[(wid * warpSize + i) * stride_ss0 + wtid + ((wtid / 16) > 0 ? 1 : 0)] = value; } @@ -62,7 +59,7 @@ __global__ void __launch_bounds__(splitD, 2) __syncthreads(); - for (int i = 0; i < L; i++) { + for (int64_t i = 0; i < L; i++) { float dt_soft_plus = dt_block[i * stride_dt + tid]; if (dt_soft_plus <= 20.0f) { dt_soft_plus = log1pf(exp(dt_soft_plus)); @@ -70,7 +67,7 @@ __global__ void __launch_bounds__(splitD, 2) float x_dt = x_block[i * stride_x + tid] * dt_soft_plus; float sumf = 0.0f; #pragma unroll - for (int j = 0; j < N; j++) { + for (size_t j = 0; j < N; j++) { float state = (smem_s0[tid * stride_ss0 + j] * expf(dt_soft_plus * smem_A[tid * stride_sA + j])) + (B_block[i * stride_B + j] * x_dt); sumf += state * C_block[i * stride_C + j]; @@ -90,7 +87,8 @@ static void ssm_scan_f32_cuda(const float * src0, const float * src1, const floa const int src1_nb0, const int src1_nb1, const int src1_nb2, const int src1_nb3, const int src2_nb0, const int src2_nb1, const int src2_nb2, const int src3_nb1, const int src4_nb1, const int src4_nb2, const int src5_nb1, const int src5_nb2, - float * dst, const int N, const int D, const int L, const int B, cudaStream_t stream) { + float * dst, const int64_t N, const int64_t D, const int64_t L, const int64_t B, + cudaStream_t stream) { const int threads = 128; // todo: consider D cannot be divided,does this situation exist? GGML_ASSERT(D % threads == 0); @@ -99,7 +97,7 @@ static void ssm_scan_f32_cuda(const float * src0, const float * src1, const floa if (N == 16) { ssm_scan_f32<128, 16><<>>( src0, src1, src2, src3, src4, src5, src0_nb1, src0_nb2, src1_nb0, src1_nb1, src1_nb2, src1_nb3, src2_nb0, - src2_nb1, src2_nb2, src3_nb1, src4_nb1, src4_nb2, src5_nb1, src5_nb2, dst, D, L, B); + src2_nb1, src2_nb2, src3_nb1, src4_nb1, src4_nb2, src5_nb1, src5_nb2, dst, L); } else { GGML_ABORT("doesn't support N!=16."); } diff --git a/ggml/src/ggml-opencl/ggml-opencl.cpp b/ggml/src/ggml-opencl/ggml-opencl.cpp index 723cab8b174cd..6806c13974323 100644 --- a/ggml/src/ggml-opencl/ggml-opencl.cpp +++ b/ggml/src/ggml-opencl/ggml-opencl.cpp @@ -924,27 +924,24 @@ static ggml_backend_opencl_context * ggml_cl2_init(ggml_backend_dev_t dev) { // TODO: fixme: these sizes are hardcoded for now. // they should be allocated based on the model's size // and the device's max alloc size - size_t max_alloc_size; - CL_CHECK(clGetDeviceInfo(device, CL_DEVICE_MAX_MEM_ALLOC_SIZE, sizeof(size_t), &max_alloc_size, NULL)); - // Allocate intermediate buffers and images size_t required_A_q_d_bytes = 311164928; size_t required_A_s_d_bytes = 38895616; size_t required_B_d_bytes = 45088768; // Ensure buffer sizes do not exceed the maximum allocation size - size_t max_A_q_d_bytes = MIN(required_A_q_d_bytes, max_alloc_size); - size_t max_A_s_d_bytes = MIN(required_A_s_d_bytes, max_alloc_size); - size_t max_B_d_bytes = MIN(required_B_d_bytes, max_alloc_size); - if (required_A_q_d_bytes > max_alloc_size) { + size_t max_A_q_d_bytes = MIN(required_A_q_d_bytes, backend_ctx->max_alloc_size); + size_t max_A_s_d_bytes = MIN(required_A_s_d_bytes, backend_ctx->max_alloc_size); + size_t max_B_d_bytes = MIN(required_B_d_bytes, backend_ctx->max_alloc_size); + if (required_A_q_d_bytes > backend_ctx->max_alloc_size) { GGML_LOG_WARN("ggml_opencl: A_q_d buffer size reduced from %zu to %zu due to device limitations.\n", required_A_q_d_bytes, max_A_q_d_bytes); } - if (required_A_s_d_bytes > max_alloc_size) { + if (required_A_s_d_bytes > backend_ctx->max_alloc_size) { GGML_LOG_WARN("ggml_opencl: A_s_d buffer size reduced from %zu to %zu due to device limitations.\n", required_A_s_d_bytes, max_A_s_d_bytes); } - if (required_B_d_bytes > max_alloc_size) { + if (required_B_d_bytes > backend_ctx->max_alloc_size) { GGML_LOG_WARN("ggml_opencl: B_d buffer size reduced from %zu to %zu due to device limitations.\n", required_B_d_bytes, max_B_d_bytes); } diff --git a/ggml/src/ggml-vulkan/CMakeLists.txt b/ggml/src/ggml-vulkan/CMakeLists.txt index 51e8301ce2e63..9d028f718d0fe 100644 --- a/ggml/src/ggml-vulkan/CMakeLists.txt +++ b/ggml/src/ggml-vulkan/CMakeLists.txt @@ -64,8 +64,10 @@ if (Vulkan_FOUND) if (${glslc_error} MATCHES ".*extension not supported: GL_EXT_integer_dot_product.*") message(STATUS "GL_EXT_integer_dot_product not supported by glslc") + set(GGML_VULKAN_INTEGER_DOT_GLSLC_SUPPORT OFF) else() message(STATUS "GL_EXT_integer_dot_product supported by glslc") + set(GGML_VULKAN_INTEGER_DOT_GLSLC_SUPPORT ON) add_compile_definitions(GGML_VULKAN_INTEGER_DOT_GLSLC_SUPPORT) endif() @@ -139,6 +141,7 @@ if (Vulkan_FOUND) -DCMAKE_INSTALL_PREFIX=${CMAKE_BINARY_DIR} -DGGML_VULKAN_COOPMAT_GLSLC_SUPPORT=${GGML_VULKAN_COOPMAT_GLSLC_SUPPORT} -DGGML_VULKAN_COOPMAT2_GLSLC_SUPPORT=${GGML_VULKAN_COOPMAT2_GLSLC_SUPPORT} + -DGGML_VULKAN_INTEGER_DOT_GLSLC_SUPPORT=${GGML_VULKAN_INTEGER_DOT_GLSLC_SUPPORT} BUILD_COMMAND ${CMAKE_COMMAND} --build . INSTALL_COMMAND ${CMAKE_COMMAND} --install . INSTALL_DIR ${CMAKE_BINARY_DIR} diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/CMakeLists.txt b/ggml/src/ggml-vulkan/vulkan-shaders/CMakeLists.txt index b1e1750219f84..e993941607ad9 100644 --- a/ggml/src/ggml-vulkan/vulkan-shaders/CMakeLists.txt +++ b/ggml/src/ggml-vulkan/vulkan-shaders/CMakeLists.txt @@ -6,6 +6,9 @@ endif() if (GGML_VULKAN_COOPMAT2_GLSLC_SUPPORT) add_compile_definitions(GGML_VULKAN_COOPMAT2_GLSLC_SUPPORT) endif() +if (GGML_VULKAN_INTEGER_DOT_GLSLC_SUPPORT) + add_compile_definitions(GGML_VULKAN_INTEGER_DOT_GLSLC_SUPPORT) +endif() set(TARGET vulkan-shaders-gen) add_executable(${TARGET} vulkan-shaders-gen.cpp) install(TARGETS ${TARGET} RUNTIME) diff --git a/src/llama-vocab.cpp b/src/llama-vocab.cpp index 521a6ec5edbc9..5d5cafbea1f1b 100644 --- a/src/llama-vocab.cpp +++ b/src/llama-vocab.cpp @@ -2221,14 +2221,12 @@ void llama_vocab::impl::tokenizer_st_partition(std::forward_list length - if (match + text.length() > raw_text_base_offset + raw_text_base_length) break; - #ifdef PRETOKENIZERDEBUG LLAMA_LOG_WARN("FF: (%ld %ld %ld) '%s'\n", raw_text->length(), raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str()); #endif diff --git a/tests/test-chat-template.cpp b/tests/test-chat-template.cpp index 894d83714105d..a9627df684922 100644 --- a/tests/test-chat-template.cpp +++ b/tests/test-chat-template.cpp @@ -278,6 +278,14 @@ int main(void) { /* .bos_token= */ "", /* .eos_token= */ "", }, + { + /* .name= */ "inclusionAI/Ling-lite", + /* .template_str */ "{% for message in messages %}{% set role = message['role'] | lower %}{% if role == 'user' %}{% set role = 'HUMAN' %}{% endif %}{% set role = role | upper %}{{ '' + role + '' + message['content'] }}{% endfor %}{% if add_generation_prompt %}{{ 'ASSISTANT' }}{% endif %}", + /* .expected_output= */ "SYSTEMYou are a helpful assistantHUMANHelloASSISTANTHi thereHUMANWho are youASSISTANT I am an assistant HUMANAnother questionASSISTANT", + /* .expected_output_jinja= */ "", + /* .bos_token= */ "", + /* .eos_token= */ "", + }, }; std::vector formatted_chat(1024); int32_t res;