Skip to content

Posterior Model Probabilities after RoBMA #3651

@bobreednz

Description

@bobreednz

JASP Version

0.95.1

Commit ID

No response

JASP Module

Meta Analysis

What analysis are you seeing the problem on?

summary(fit, type = "models")

What OS are you seeing the problem on?

Windows 11

Bug Description

It is my understanding that the command "summary(fit, type = "models")" should produce, among other things, posterior model probabilities. But it doesn't (see attached). I used the Bem2011 data. The program was taken from the "Show RoBMA R code" under "Advanced". I have copied that code below.

Image

fit <- RoBMA(
d = dataset[['d']],
se = dataset[['se']],
prior_scale = 'cohens_d',
transformation = 'fishers_z',
priors_effect = list(
prior(distribution = 'normal', parameters = list(mean = 0, sd = 1), truncation = list(lower = -Inf, upper = Inf), prior_weights = 1)
),
priors_heterogeneity = list(
prior(distribution = 'invgamma', parameters = list(shape = 1, scale = 0.15), truncation = list(lower = 0, upper = Inf), prior_weights = 1)
),
priors_effect_null = list(
prior(distribution = 'point', parameters = list(location = 0), prior_weights = 1)
),
priors_heterogeneity_null = list(
prior(distribution = 'point', parameters = list(location = 0), prior_weights = 1)
),
priors_bias = list(
prior_weightfunction(distribution = 'two.sided', parameters = list(steps = 0.05, alpha = c(1, 1)), prior_weights = 0.0833333333333333),
prior_weightfunction(distribution = 'two.sided', parameters = list(steps = c(0.05, 0.1), alpha = c(1, 1, 1)), prior_weights = 0.0833333333333333),
prior_weightfunction(distribution = 'one.sided', parameters = list(steps = 0.05, alpha = c(1, 1)), prior_weights = 0.0833333333333333),
prior_weightfunction(distribution = 'one.sided', parameters = list(steps = c(0.025, 0.05), alpha = c(1, 1, 1)), prior_weights = 0.0833333333333333),
prior_weightfunction(distribution = 'one.sided', parameters = list(steps = c(0.05, 0.5), alpha = c(1, 1, 1)), prior_weights = 0.0833333333333333),
prior_weightfunction(distribution = 'one.sided', parameters = list(steps = c(0.025, 0.05, 0.5), alpha = c(1, 1, 1, 1)), prior_weights = 0.0833333333333333),
prior_PET(distribution = 't', parameters = list(location = 0, scale = 1, df = 1), truncation = list(lower = 0, upper = Inf), prior_weights = 0.25),
prior_PEESE(distribution = 't', parameters = list(location = 0, scale = 5, df = 1), truncation = list(lower = 0, upper = Inf), prior_weights = 0.25)
),
priors_bias_null = list(
prior_none(prior_weights = 1)
),
effect_direction = if (median(dataset[['d']]) >= 0) 'positive' else 'negative',
chains = 3,
adapt = 3500,
burnin = 4500,
sample = 10000,
thin = 1,
autofit = FALSE,
algorithm = 'ss'
)

Expected Behaviour

I would have expected to see prior and posterior model weights.

Steps to Reproduce

Reran the program.

Log (if any)

No response

More Debug Information

No response

Final Checklist

  • I have included a screenshot showcasing the issue, if possible.
  • I have included a JASP file (zipped) or data file that causes the crash/bug, if applicable.
  • I have accurately described the bug, and steps to reproduce it.

Metadata

Metadata

Assignees

Type

No type

Projects

No projects

Milestone

No milestone

Relationships

None yet

Development

No branches or pull requests

Issue actions