-
Notifications
You must be signed in to change notification settings - Fork 29
Description
JASP Version
0.95.1
Commit ID
No response
JASP Module
Meta Analysis
What analysis are you seeing the problem on?
summary(fit, type = "models")
What OS are you seeing the problem on?
Windows 11
Bug Description
It is my understanding that the command "summary(fit, type = "models")" should produce, among other things, posterior model probabilities. But it doesn't (see attached). I used the Bem2011 data. The program was taken from the "Show RoBMA R code" under "Advanced". I have copied that code below.
fit <- RoBMA(
d = dataset[['d']],
se = dataset[['se']],
prior_scale = 'cohens_d',
transformation = 'fishers_z',
priors_effect = list(
prior(distribution = 'normal', parameters = list(mean = 0, sd = 1), truncation = list(lower = -Inf, upper = Inf), prior_weights = 1)
),
priors_heterogeneity = list(
prior(distribution = 'invgamma', parameters = list(shape = 1, scale = 0.15), truncation = list(lower = 0, upper = Inf), prior_weights = 1)
),
priors_effect_null = list(
prior(distribution = 'point', parameters = list(location = 0), prior_weights = 1)
),
priors_heterogeneity_null = list(
prior(distribution = 'point', parameters = list(location = 0), prior_weights = 1)
),
priors_bias = list(
prior_weightfunction(distribution = 'two.sided', parameters = list(steps = 0.05, alpha = c(1, 1)), prior_weights = 0.0833333333333333),
prior_weightfunction(distribution = 'two.sided', parameters = list(steps = c(0.05, 0.1), alpha = c(1, 1, 1)), prior_weights = 0.0833333333333333),
prior_weightfunction(distribution = 'one.sided', parameters = list(steps = 0.05, alpha = c(1, 1)), prior_weights = 0.0833333333333333),
prior_weightfunction(distribution = 'one.sided', parameters = list(steps = c(0.025, 0.05), alpha = c(1, 1, 1)), prior_weights = 0.0833333333333333),
prior_weightfunction(distribution = 'one.sided', parameters = list(steps = c(0.05, 0.5), alpha = c(1, 1, 1)), prior_weights = 0.0833333333333333),
prior_weightfunction(distribution = 'one.sided', parameters = list(steps = c(0.025, 0.05, 0.5), alpha = c(1, 1, 1, 1)), prior_weights = 0.0833333333333333),
prior_PET(distribution = 't', parameters = list(location = 0, scale = 1, df = 1), truncation = list(lower = 0, upper = Inf), prior_weights = 0.25),
prior_PEESE(distribution = 't', parameters = list(location = 0, scale = 5, df = 1), truncation = list(lower = 0, upper = Inf), prior_weights = 0.25)
),
priors_bias_null = list(
prior_none(prior_weights = 1)
),
effect_direction = if (median(dataset[['d']]) >= 0) 'positive' else 'negative',
chains = 3,
adapt = 3500,
burnin = 4500,
sample = 10000,
thin = 1,
autofit = FALSE,
algorithm = 'ss'
)
Expected Behaviour
I would have expected to see prior and posterior model weights.
Steps to Reproduce
Reran the program.
Log (if any)
No response
More Debug Information
No response
Final Checklist
- I have included a screenshot showcasing the issue, if possible.
- I have included a JASP file (zipped) or data file that causes the crash/bug, if applicable.
- I have accurately described the bug, and steps to reproduce it.