@@ -7,9 +7,11 @@ options$modelOptimization <- "manual"
7
7
options $ modelValid <- " validationManual"
8
8
options $ predictionsColumn <- " "
9
9
options $ predictors <- c(" Sepal.Length" , " Sepal.Width" , " Petal.Length" , " Petal.Width" )
10
+ options $ predictors.types <- rep(" scale" , 4 )
10
11
options $ savePath <- " "
11
12
options $ setSeed <- TRUE
12
13
options $ target <- " Species"
14
+ options $ target.types <- " nominal"
13
15
options $ testIndicatorColumn <- " "
14
16
options $ testSetIndicatorVariable <- " "
15
17
options $ dataSplitPlot <- FALSE
@@ -37,13 +39,15 @@ options$noOfFolds <- 5
37
39
options $ accuracyDecreasePlot <- TRUE
38
40
options $ purityIncreasePlot <- TRUE
39
41
options $ treesVsModelErrorPlot <- TRUE
40
- options $ predictors <- list (" Alcohol" , " Malic" , " Ash" , " Alcalinity" , " Magnesium" , " Phenols" ,
41
- " Flavanoids" , " Nonflavanoids" , " Proanthocyanins" , " Color" ,
42
+ options $ predictors <- list (" Alcohol" , " Malic" , " Ash" , " Alcalinity" , " Magnesium" , " Phenols" ,
43
+ " Flavanoids" , " Nonflavanoids" , " Proanthocyanins" , " Color" ,
42
44
" Hue" , " Dilution" , " Proline" )
45
+ options $ predictors.types <- rep(" scale" , length(options $ predictors ))
43
46
options $ rocCurve <- TRUE
44
47
options $ setSeed <- TRUE
45
48
options $ featureImportanceTable <- TRUE
46
49
options $ target <- " Type"
50
+ options $ target.types <- " scale"
47
51
options $ testDataManual <- 0.2
48
52
options $ testIndicatorColumn <- " "
49
53
options $ testSetIndicatorVariable <- " "
0 commit comments