@@ -2,7 +2,7 @@ context("Machine Learning K-Means Clustering")
22
33# Test fixed model #############################################################
44options <- initMlOptions(" mlClusteringKMeans" )
5- options $ predictors <- list (" Sepal.Length" , " Sepal.Width" , " Petal.Length" , " Petal.Width" )
5+ options $ predictors <- c (" Sepal.Length" , " Sepal.Width" , " Petal.Length" , " Petal.Width" )
66options $ predictors.types <- rep(" scale" , length(options $ predictors ))
77options $ modelOptimization <- " manual"
88options $ predictionsColumn <- " "
@@ -18,7 +18,7 @@ jaspTools::expect_equal_tables(table,
1818
1919# Test optimized model #########################################################
2020options <- initMlOptions(" mlClusteringKMeans" )
21- options $ predictors <- list (" Alcohol" , " Malic" , " Ash" , " Alcalinity" , " Magnesium" , " Phenols" ,
21+ options $ predictors <- c (" Alcohol" , " Malic" , " Ash" , " Alcalinity" , " Magnesium" , " Phenols" ,
2222 " Flavanoids" , " Nonflavanoids" , " Proanthocyanins" , " Color" ,
2323 " Hue" , " Dilution" , " Proline" )
2424options $ predictors.types <- rep(" scale" , length(options $ predictors ))
@@ -104,7 +104,7 @@ test_that("t-SNE Cluster Plot matches", {
104104context(" Machine Learning K-Medians Clustering" )
105105
106106options <- initMlOptions(" mlClusteringKMeans" )
107- options $ predictors <- list (" Alcohol" , " Malic" , " Ash" , " Alcalinity" , " Magnesium" , " Phenols" ,
107+ options $ predictors <- c (" Alcohol" , " Malic" , " Ash" , " Alcalinity" , " Magnesium" , " Phenols" ,
108108 " Flavanoids" , " Nonflavanoids" , " Proanthocyanins" , " Color" ,
109109 " Hue" , " Dilution" , " Proline" )
110110options $ predictors.types <- rep(" scale" , length(options $ predictors ))
@@ -186,7 +186,7 @@ test_that("Elbow Method Plot matches", {
186186context(" Machine Learning K-Medoids Clustering" )
187187
188188options <- initMlOptions(" mlClusteringKMeans" )
189- options $ predictors <- list (" Alcohol" , " Malic" , " Ash" , " Alcalinity" , " Magnesium" , " Phenols" ,
189+ options $ predictors <- c (" Alcohol" , " Malic" , " Ash" , " Alcalinity" , " Magnesium" , " Phenols" ,
190190 " Flavanoids" , " Nonflavanoids" , " Proanthocyanins" , " Color" ,
191191 " Hue" , " Dilution" , " Proline" )
192192options $ predictors.types <- rep(" scale" , length(options $ predictors ))
0 commit comments