Skip to content

Commit 64ddeaf

Browse files
armgongkoenderks
authored andcommitted
Translated using Weblate (Chinese (Simplified Han script))
Currently translated at 13.1% (78 of 595 strings) Translation: JASP/jaspMachineLearning-QML Translate-URL: https://hosted.weblate.org/projects/jasp/jaspmachinelearning-qml/zh_Hans/
1 parent 2ecc283 commit 64ddeaf

File tree

1 file changed

+62
-55
lines changed

1 file changed

+62
-55
lines changed

po/QML-zh_Hans.po

Lines changed: 62 additions & 55 deletions
Original file line numberDiff line numberDiff line change
@@ -1,9 +1,15 @@
11
msgid ""
22
msgstr ""
3+
"PO-Revision-Date: 2024-11-19 12:00+0000\n"
4+
"Last-Translator: Yu Gong <[email protected]>\n"
5+
"Language-Team: Chinese (Simplified Han script) <https://hosted.weblate.org/"
6+
"projects/jasp/jaspmachinelearning-qml/zh_Hans/>\n"
7+
"Language: zh_Hans\n"
38
"MIME-Version: 1.0\n"
49
"Content-Type: text/plain; charset=UTF-8\n"
510
"Content-Transfer-Encoding: 8bit\n"
611
"Plural-Forms: nplurals=1; plural=0;\n"
12+
"X-Generator: Weblate 5.9-dev\n"
713
"X-Language: zh_Hans\n"
814
"X-Qt-Contexts: true\n"
915

@@ -71,7 +77,7 @@ msgstr "线性判别分析"
7177

7278
msgctxt "Description|"
7379
msgid "Linear Discriminant Classification"
74-
msgstr ""
80+
msgstr "线性判别分类"
7581

7682
msgctxt "Description|"
7783
msgid "Random Forest Classification"
@@ -83,7 +89,7 @@ msgstr "聚类分析"
8389

8490
msgctxt "Description|"
8591
msgid "Density-Based"
86-
msgstr ""
92+
msgstr "基于密度的"
8793

8894
msgctxt "Description|"
8995
msgid "Density-Based Clustering"
@@ -111,231 +117,231 @@ msgstr "随机森林聚类"
111117

112118
msgctxt "DataSplit|"
113119
msgid "Data Split Preferences"
114-
msgstr ""
120+
msgstr "数据分割选项"
115121

116122
msgctxt "DataSplit|"
117123
msgid "Holdout Test Data"
118-
msgstr ""
124+
msgstr "测试数据(留出法)"
119125

120126
msgctxt "DataSplit|"
121127
msgid "Sample"
122-
msgstr ""
128+
msgstr "样本"
123129

124130
msgctxt "DataSplit|"
125131
msgid "% of all data"
126-
msgstr ""
132+
msgstr "全部数据的%"
127133

128134
msgctxt "DataSplit|"
129135
msgid "Add generated indicator to data"
130-
msgstr ""
136+
msgstr "将生成的指标添加到数据中"
131137

132138
msgctxt "DataSplit|"
133139
msgid "None"
134-
msgstr ""
140+
msgstr ""
135141

136142
msgctxt "DataSplit|"
137143
msgid "Training and Validation Data"
138-
msgstr ""
144+
msgstr "训练和验证数据"
139145

140146
msgctxt "DataSplit|"
141147
msgid "% for validation data"
142-
msgstr ""
148+
msgstr "%的验证数据"
143149

144150
msgctxt "DataSplit|"
145151
msgid "K-fold with"
146-
msgstr ""
152+
msgstr "K-折"
147153

148154
msgctxt "DataSplit|"
149155
msgid "folds"
150-
msgstr ""
156+
msgstr ""
151157

152158
msgctxt "DataSplit|"
153159
msgid "Leave-one-out"
154-
msgstr ""
160+
msgstr "留一法"
155161

156162
msgctxt "mlClassificationBoosting|"
157163
msgid "Tables"
158-
msgstr ""
164+
msgstr ""
159165

160166
msgctxt "mlClassificationBoosting|"
161167
msgid "Plots"
162-
msgstr ""
168+
msgstr ""
163169

164170
msgctxt "mlClassificationBoosting|"
165171
msgid "Training Parameters"
166-
msgstr ""
172+
msgstr "训练参数"
167173

168174
msgctxt "mlClassificationBoosting|"
169175
msgid "Algorithmic Settings"
170-
msgstr ""
176+
msgstr "算法设置"
171177

172178
msgctxt "mlClassificationKnn|"
173179
msgid "Tables"
174-
msgstr ""
180+
msgstr ""
175181

176182
msgctxt "mlClassificationKnn|"
177183
msgid "Plots"
178-
msgstr ""
184+
msgstr ""
179185

180186
msgctxt "mlClassificationKnn|"
181187
msgid "Training Parameters"
182-
msgstr ""
188+
msgstr "训练参数"
183189

184190
msgctxt "mlClassificationKnn|"
185191
msgid "Algorithmic Settings"
186-
msgstr ""
192+
msgstr "算法设置"
187193

188194
msgctxt "mlClassificationLda|"
189195
msgid "Tables"
190-
msgstr ""
196+
msgstr ""
191197

192198
msgctxt "mlClassificationLda|"
193199
msgid "Coefficients"
194-
msgstr ""
200+
msgstr "系数"
195201

196202
msgctxt "mlClassificationLda|"
197203
msgid "Prior and posterior probabilities"
198-
msgstr ""
204+
msgstr "先验和后验概率"
199205

200206
msgctxt "mlClassificationLda|"
201207
msgid "Class means training data"
202208
msgstr ""
203209

204210
msgctxt "mlClassificationLda|"
205211
msgid "Assumption Checks"
206-
msgstr ""
212+
msgstr "假设检验"
207213

208214
msgctxt "mlClassificationLda|"
209215
msgid "Equality of class means"
210216
msgstr ""
211217

212218
msgctxt "mlClassificationLda|"
213219
msgid "Equality of covariance matrices"
214-
msgstr ""
220+
msgstr "协方差矩阵的相等性"
215221

216222
msgctxt "mlClassificationLda|"
217223
msgid "Multicollinearity"
218-
msgstr ""
224+
msgstr "多重共线性"
219225

220226
msgctxt "mlClassificationLda|"
221227
msgid "Plots"
222-
msgstr ""
228+
msgstr ""
223229

224230
msgctxt "mlClassificationLda|"
225231
msgid "Linear discriminant matrix"
226-
msgstr ""
232+
msgstr "线性判别矩阵"
227233

228234
msgctxt "mlClassificationLda|"
229235
msgid "Densities"
230-
msgstr ""
236+
msgstr "密度"
231237

232238
msgctxt "mlClassificationLda|"
233239
msgid "Scatter plots"
234-
msgstr ""
240+
msgstr "散点图"
235241

236242
msgctxt "mlClassificationLda|"
237243
msgid "Training Parameters"
238-
msgstr ""
244+
msgstr "训练参数"
239245

240246
msgctxt "mlClassificationLda|"
241247
msgid "Algorithmic Settings"
242-
msgstr ""
248+
msgstr "算法设置"
243249

244250
msgctxt "mlClassificationRandomForest|"
245251
msgid "Tables"
246-
msgstr ""
252+
msgstr ""
247253

248254
msgctxt "mlClassificationRandomForest|"
249255
msgid "Plots"
250-
msgstr ""
256+
msgstr ""
251257

252258
msgctxt "mlClassificationRandomForest|"
253259
msgid "Training Parameters"
254-
msgstr ""
260+
msgstr "训练参数"
255261

256262
msgctxt "mlClassificationRandomForest|"
257263
msgid "Algorithmic Settings"
258-
msgstr ""
264+
msgstr "算法设置"
259265

260266
msgctxt "mlClusteringDensityBased|"
261267
msgid "Tables"
262-
msgstr ""
268+
msgstr ""
263269

264270
msgctxt "mlClusteringDensityBased|"
265271
msgid "Plots"
266-
msgstr ""
272+
msgstr ""
267273

268274
msgctxt "mlClusteringDensityBased|"
269275
msgid "K-distance plot"
270-
msgstr ""
276+
msgstr "K-距离图"
271277

272278
msgctxt "mlClusteringDensityBased|"
273279
msgid "Training Parameters"
274280
msgstr ""
275281

276282
msgctxt "mlClusteringDensityBased|"
277283
msgid "Algorithmic Settings"
278-
msgstr ""
284+
msgstr "训练参数"
279285

280286
msgctxt "mlClusteringDensityBased|"
281287
msgid "Normal"
282288
msgstr ""
283289

284290
msgctxt "mlClusteringDensityBased|"
285291
msgid "Correlated"
286-
msgstr ""
292+
msgstr "相关"
287293

288294
msgctxt "mlClusteringDensityBased|"
289295
msgid "Model Optimization"
290-
msgstr ""
296+
msgstr "模型优化"
291297

292298
msgctxt "mlClusteringDensityBased|"
293299
msgid "Fixed"
294300
msgstr ""
295301

296302
msgctxt "mlClusteringFuzzyCMeans|"
297303
msgid "Tables"
298-
msgstr ""
304+
msgstr ""
299305

300306
msgctxt "mlClusteringFuzzyCMeans|"
301307
msgid "Plots"
302-
msgstr ""
308+
msgstr ""
303309

304310
msgctxt "mlClusteringFuzzyCMeans|"
305311
msgid "Training Parameters"
306-
msgstr ""
312+
msgstr "训练参数"
307313

308314
msgctxt "mlClusteringFuzzyCMeans|"
309315
msgid "Algorithmic Settings"
310-
msgstr ""
316+
msgstr "算法设置"
311317

312318
msgctxt "mlClusteringHierarchical|"
313319
msgid "Tables"
314-
msgstr ""
320+
msgstr ""
315321

316322
msgctxt "mlClusteringHierarchical|"
317323
msgid "Plots"
318-
msgstr ""
324+
msgstr ""
319325

320326
msgctxt "mlClusteringHierarchical|"
321327
msgid "Dendrogram"
322-
msgstr ""
328+
msgstr "树状图"
323329

324330
msgctxt "mlClusteringHierarchical|"
325331
msgid "Training Parameters"
326-
msgstr ""
332+
msgstr "训练参数"
327333

328334
msgctxt "mlClusteringHierarchical|"
329335
msgid "Algorithmic Settings"
330-
msgstr ""
336+
msgstr "算法设置"
331337

332338
msgctxt "mlClusteringHierarchical|"
333339
msgid "Euclidean"
334-
msgstr ""
340+
msgstr "欧氏"
335341

336342
msgctxt "mlClusteringHierarchical|"
337343
msgid "Average"
338-
msgstr ""
344+
msgstr "Average"
339345

340346
msgctxt "mlClusteringHierarchical|"
341347
msgid "Single"
@@ -2786,4 +2792,5 @@ msgid ""
27862792
"The prediction analysis enables you to load a trained machine learning model "
27872793
"and apply it to new data. It is important that the features in the new "
27882794
"dataset have the same names as in the original dataset used for training."
2789-
msgstr ""
2795+
msgstr "预测分析使您能够加载经过训练的机器学习模型并将其应用于新数据。新数据集中的特"
2796+
"征必须与训练数据集中的特征具有相同的名称。"

0 commit comments

Comments
 (0)