|
149 | 149 | table$dependOn(options = .mlClusteringDependencies(options))
|
150 | 150 | table$addColumnInfo(name = "clusters", title = gettext("Clusters"), type = "integer")
|
151 | 151 | table$addColumnInfo(name = "n", title = gettext("N"), type = "integer")
|
152 |
| - table$addColumnInfo(name = "measure", title = gettextf("R%s", "\u00B2"), type = "number", format = "dp:2") |
153 |
| - table$addColumnInfo(name = "aic", title = gettext("AIC"), type = "number", format = "dp:2") |
154 |
| - table$addColumnInfo(name = "bic", title = gettext("BIC"), type = "number", format = "dp:2") |
155 |
| - table$addColumnInfo(name = "Silh", title = gettext("Silhouette"), type = "number", format = "dp:2") |
| 152 | + table$addColumnInfo(name = "measure", title = gettextf("R%s", "\u00B2"), type = "number") |
| 153 | + table$addColumnInfo(name = "aic", title = gettext("AIC"), type = "number") |
| 154 | + table$addColumnInfo(name = "bic", title = gettext("BIC"), type = "number") |
| 155 | + table$addColumnInfo(name = "Silh", title = gettext("Silhouette"), type = "number") |
156 | 156 | if (type == "kmeans") {
|
157 | 157 | table$addCitation("Hartigan, J. A., & Wong, M. A. (1979). Algorithm AS 136: A k-means clustering algorithm. Journal of the Royal Statistical Society. Series C (Applied Statistics), 28(1), 100-108.")
|
158 | 158 | } else if (type == "kmedians") {
|
|
245 | 245 | if (options[["tableClusterInformationCentroids"]]) {
|
246 | 246 | for (i in seq_along(options[["predictors"]])) {
|
247 | 247 | title <- gettextf("Center %s", options[["predictors"]][i])
|
248 |
| - table$addColumnInfo(name = paste0("centroid", i), title = title, type = "number", format = "dp:3") |
| 248 | + table$addColumnInfo(name = paste0("centroid", i), title = title, type = "number") |
249 | 249 | }
|
250 | 250 | }
|
251 | 251 | }
|
|
0 commit comments