11msgid ""
22msgstr ""
3+ "PO-Revision-Date : 2025-11-03 08:51+0000\n "
4+ "
Last-Translator :
陳寬裕 <[email protected] >\n "
5+ "Language-Team : Chinese (Traditional Han script) <https://hosted.weblate.org/ "
6+ "projects/jasp/jaspmachinelearning-qml/zh_Hant/>\n "
7+ "Language : zh_Hant\n "
38"MIME-Version : 1.0\n "
49"Content-Type : text/plain; charset=UTF-8\n "
510"Content-Transfer-Encoding : 8bit\n "
611"Plural-Forms : nplurals=1; plural=0;\n "
12+ "X-Generator : Weblate 5.14.1-dev\n "
713"X-Language : zh_Hant\n "
814"X-Qt-Contexts : true\n "
915
@@ -331,7 +337,7 @@ msgstr "圖"
331337
332338msgctxt "mlClusteringHierarchical|"
333339msgid "Dendrogram"
334- msgstr ""
340+ msgstr "樹狀圖 "
335341
336342msgctxt "mlClusteringHierarchical|"
337343msgid "Training Parameters"
@@ -348,35 +354,35 @@ msgstr "歐幾里得"
348354
349355msgctxt "mlClusteringHierarchical|"
350356msgid "Average"
351- msgstr "平均 "
357+ msgstr "平均距離法 "
352358
353359msgctxt "mlClusteringHierarchical|"
354360msgid "Single"
355- msgstr ""
361+ msgstr "最短距離法 "
356362
357363msgctxt "mlClusteringHierarchical|"
358364msgid "Complete"
359- msgstr ""
365+ msgstr "最長距離法 "
360366
361367msgctxt "mlClusteringHierarchical|"
362368msgid "Centroid"
363- msgstr ""
369+ msgstr "群中心距離法 "
364370
365371msgctxt "mlClusteringHierarchical|"
366372msgid "Median"
367373msgstr "中位數"
368374
369375msgctxt "mlClusteringHierarchical|"
370376msgid "Ward.D"
371- msgstr ""
377+ msgstr "華德法 "
372378
373379msgctxt "mlClusteringHierarchical|"
374380msgid "Ward.D2"
375- msgstr ""
381+ msgstr "第二代華德法 "
376382
377383msgctxt "mlClusteringHierarchical|"
378384msgid "McQuitty"
379- msgstr ""
385+ msgstr "McQuitty 法 "
380386
381387#, fuzzy
382388msgctxt "mlClusteringKMeans|"
@@ -653,7 +659,7 @@ msgstr "皮爾森"
653659
654660msgctxt "mlClusteringHierarchical|"
655661msgid "Linkage"
656- msgstr ""
662+ msgstr "集群方法 "
657663
658664msgctxt "mlClusteringKMeans|"
659665msgid "Max. iterations"
@@ -1812,7 +1818,7 @@ msgstr ""
18121818
18131819msgctxt "DecisionBoundary|"
18141820msgid "Add data points"
1815- msgstr ""
1821+ msgstr "新增資料點 "
18161822
18171823msgctxt "DecisionBoundary|"
18181824msgid "Show the observations in the data set as points in the plot."
@@ -1829,6 +1835,9 @@ msgid ""
18291835"optimal number of clusters. The plot shows three curves using AIC, BIC, and "
18301836"'elbow method' optimization."
18311837msgstr ""
1838+ "生成一個圖表,圖的 Y 軸為群內平方和總和(total within sum of squares),X 軸"
1839+ "為群數(number of clusters)。這個圖可用來判斷最佳群數。圖中會顯示三條曲線,"
1840+ "分別依據 AIC、BIC 以及手肘部法(elbow method)進行最佳化。"
18321841
18331842msgctxt "PredictivePerformance|"
18341843msgid "Predictive performance"
@@ -1864,6 +1873,11 @@ msgid ""
18641873"across several clustering analyses you can set their seed to the same value, "
18651874"as the t-SNE algorithm uses random starting values."
18661875msgstr ""
1876+ "生成集群結果的 t-SNE 圖。t-SNE 圖可用於將高維資料投影到二維空間,以視覺化資料"
1877+ "點之間的相對距離。由於 t-SNE 的二維空間坐標沒有明確的數值意義,因此軸本身不可"
1878+ "解釋。t-SNE 圖的目的是呈現觀測值與群之間的相對距離印象。若想在多次集群分析中"
1879+ "生成相同的 t-SNE 圖,可以將隨機起點(或稱種子,seed)設為相同,因為 t-SNE 演算"
1880+ "法會使用隨機的起始值。"
18671881
18681882#, fuzzy
18691883msgctxt "Tsne|"
@@ -1876,13 +1890,13 @@ msgstr ""
18761890
18771891msgctxt "Tsne|"
18781892msgid "Add data labels"
1879- msgstr ""
1893+ msgstr "新增資料標籤 "
18801894
18811895msgctxt "Tsne|"
18821896msgid ""
18831897"Add the row numbers of the observations in the data set as labels to the "
18841898"plot."
1885- msgstr ""
1899+ msgstr "將資料集中各觀測值的列號(row numbers)作為標籤,加入到圖中。 "
18861900
18871901#, fuzzy
18881902msgctxt "ClassProportions|"
@@ -1919,7 +1933,7 @@ msgstr ""
19191933
19201934msgctxt "ClusterInfo|"
19211935msgid "Silhouette score"
1922- msgstr "輪廓係數"
1936+ msgstr "輪廓係數(Silhouette) "
19231937
19241938msgctxt "ClusterInfo|"
19251939msgid "Adds a row with the silhouette score of each cluster to the table."
@@ -2016,7 +2030,7 @@ msgstr "集群決策"
20162030
20172031msgctxt "ClusterDetermination|"
20182032msgid "Choose how to determine the number of clusters in the model."
2019- msgstr ""
2033+ msgstr "選擇用何種方式來決定模型中的集群數量。 "
20202034
20212035#, fuzzy
20222036msgctxt "ClusterDetermination|"
@@ -2027,15 +2041,16 @@ msgctxt "ClusterDetermination|"
20272041msgid ""
20282042"Enables you to generate a fixed amount of clusters. This allows you to "
20292043"generate your own specified number of clusters, and thus, optimize manually."
2030- msgstr ""
2044+ msgstr "可讓你生成固定數量的集群。這表示你可以自行指定要分成的集群,並以此手動進行最"
2045+ "佳化。"
20312046
20322047msgctxt "ClusterDetermination|"
20332048msgid "Clusters"
20342049msgstr "集群數"
20352050
20362051msgctxt "ClusterDetermination|"
20372052msgid "The number of clusters to be fitted."
2038- msgstr ""
2053+ msgstr "要擬合(或設定)的集群數量。 "
20392054
20402055msgctxt "ClusterDetermination|"
20412056msgid "Optimized according to"
@@ -2045,7 +2060,7 @@ msgctxt "ClusterDetermination|"
20452060msgid ""
20462061"Enables you to choose an optimization method. BIC optimization is set as "
20472062"default."
2048- msgstr ""
2063+ msgstr "允許你選擇一種最佳化方法。系統預設使用 BIC 最佳化。 "
20492064
20502065msgctxt "ClusterDetermination|"
20512066msgid ""
@@ -2058,6 +2073,11 @@ msgid ""
20582073"uses the similarity of observations within a cluster and their dissimilarity "
20592074"to other clusters for optimizing the clustering output."
20602075msgstr ""
2076+ "最佳化方法的選項包括 AIC、BIC 和 Silhouette(輪廓係數)。AIC 是根據群內平方和("
2077+ "群內變異量)、生成的群數,以及資料的維度數來最佳化群集結果。BIC 則是根據群內平"
2078+ "方和(群內變異量)、生成的群數、維度數,以及樣本大小來最佳化群集結果。"
2079+ "Silhouette(輪廓係數)則透過比較同一群內觀測值之間的相似程度,以及它們與其他群"
2080+ "之間的不相似程度,來評估並最佳化群集結果。"
20612081
20622082msgctxt "ClusterDetermination|"
20632083msgid "Max. clusters"
@@ -2144,7 +2164,7 @@ msgstr ""
21442164
21452165msgctxt "ScaleVariables|"
21462166msgid "Scale features"
2147- msgstr "特徵縮放 "
2167+ msgstr "特徵標準化 "
21482168
21492169msgctxt "ScaleVariables|"
21502170msgid ""
@@ -2154,18 +2174,24 @@ msgid ""
21542174"the Z-score standardization of a mean of 0 and a standard deviation of 1. "
21552175"This option is selected by default."
21562176msgstr ""
2177+ "將資料集中的連續變數進行標準化。標準化的目的,是讓原本量尺不同的變數,其數值"
2178+ "能被轉換到相似的尺度範圍中。如此一來,可以提升數值運算的穩定性。JASP 採用 Z "
2179+ "分數標準化方式,將各變數轉換為平均數為 0、標準差為 1 的常態分配。此選項為預設"
2180+ "啟用。"
21572181
2158- #, fuzzy
21592182msgctxt "SetSeed|"
21602183msgid "Set seed"
2161- msgstr "設定種子值 "
2184+ msgstr "設定隨機起點 "
21622185
21632186msgctxt "SetSeed|"
21642187msgid ""
21652188"Gives the option to set a seed for your analysis. Setting a seed will "
21662189"exclude random processes influencing an analysis. For example, setting a "
21672190"seed makes it possible to re-run analyses with the same data splits."
21682191msgstr ""
2192+ "此選項可讓你為分析設定一個隨機起點(或稱種子,seed)。設定隨機起點後,可以排除"
2193+ "隨機過程對分析結果的影響。例如,設定隨機起點可讓你在重新執行分析時,使用相同"
2194+ "的資料分割方式,確保結果一致。"
21692195
21702196msgctxt "SetSeed|"
21712197msgid "The value of the seed."
0 commit comments