|  | 
| 1 | 1 | package g3301_3400.s3395_subsequences_with_a_unique_middle_mode_i; | 
| 2 | 2 | 
 | 
| 3 |  | -// #Hard #Array #Hash_Table #Math #Combinatorics | 
| 4 |  | -// #2025_01_06_Time_1141_(39.01%)_Space_44.78_(100.00%) | 
|  | 3 | +// #Hard #Array #Hash_Table #Math #Combinatorics #2025_01_06_Time_27_(99.29%)_Space_45.15_(97.87%) | 
| 5 | 4 | 
 | 
| 6 |  | -import java.util.ArrayList; | 
| 7 | 5 | import java.util.HashMap; | 
| 8 |  | -import java.util.List; | 
| 9 | 6 | import java.util.Map; | 
| 10 | 7 | 
 | 
| 11 | 8 | public class Solution { | 
| 12 |  | -    private static final int MOD = 1000000007; | 
|  | 9 | +    private static final int MOD = (int) 1e9 + 7; | 
|  | 10 | +    private long[] c2 = new long[1001]; | 
| 13 | 11 | 
 | 
| 14 |  | -    public int subsequencesWithMiddleMode(int[] a) { | 
| 15 |  | -        int n = a.length; | 
| 16 |  | -        // Create a dictionary to store indices of each number | 
| 17 |  | -        Map<Integer, List<Integer>> dict = new HashMap<>(); | 
| 18 |  | -        for (int i = 0; i < n; i++) { | 
| 19 |  | -            dict.computeIfAbsent(a[i], k -> new ArrayList<>()).add(i); | 
| 20 |  | -        } | 
| 21 |  | -        long ans = 0L; | 
| 22 |  | -        // Iterate over each unique number and its indices | 
| 23 |  | -        for (Map.Entry<Integer, List<Integer>> entry : dict.entrySet()) { | 
| 24 |  | -            List<Integer> b = entry.getValue(); | 
| 25 |  | -            int m = b.size(); | 
| 26 |  | -            for (int k = 0; k < m; k++) { | 
| 27 |  | -                int i = b.get(k); | 
| 28 |  | -                int r = m - 1 - k; | 
| 29 |  | -                int u = i - k; | 
| 30 |  | -                int v = (n - 1 - i) - r; | 
| 31 |  | -                // Case 2: Frequency of occurrence is 2 times | 
| 32 |  | -                ans = (ans + convert(k, 1) * convert(u, 1) % MOD * convert(v, 2) % MOD) % MOD; | 
| 33 |  | -                ans = (ans + convert(r, 1) * convert(u, 2) % MOD * convert(v, 1) % MOD) % MOD; | 
| 34 |  | -                // Case 3: Frequency of occurrence is 3 times | 
| 35 |  | -                ans = (ans + convert(k, 2) * convert(v, 2) % MOD) % MOD; | 
| 36 |  | -                ans = (ans + convert(r, 2) * convert(u, 2) % MOD) % MOD; | 
| 37 |  | -                ans = | 
| 38 |  | -                        (ans | 
| 39 |  | -                                        + convert(k, 1) | 
| 40 |  | -                                                * convert(r, 1) | 
| 41 |  | -                                                % MOD | 
| 42 |  | -                                                * convert(u, 1) | 
| 43 |  | -                                                % MOD | 
| 44 |  | -                                                * convert(v, 1) | 
| 45 |  | -                                                % MOD) | 
| 46 |  | -                                % MOD; | 
| 47 |  | - | 
| 48 |  | -                // Case 4: Frequency of occurrence is 4 times | 
| 49 |  | -                ans = (ans + convert(k, 2) * convert(r, 1) % MOD * convert(v, 1) % MOD) % MOD; | 
| 50 |  | -                ans = (ans + convert(k, 1) * convert(r, 2) % MOD * convert(u, 1) % MOD) % MOD; | 
| 51 |  | - | 
| 52 |  | -                // Case 5: Frequency of occurrence is 5 times | 
| 53 |  | -                ans = (ans + convert(k, 2) * convert(r, 2) % MOD) % MOD; | 
|  | 12 | +    public int subsequencesWithMiddleMode(int[] nums) { | 
|  | 13 | +        if (c2[2] == 0) { | 
|  | 14 | +            c2[0] = c2[1] = 0; | 
|  | 15 | +            c2[2] = 1; | 
|  | 16 | +            for (int i = 3; i < c2.length; ++i) { | 
|  | 17 | +                c2[i] = i * (i - 1) / 2; | 
| 54 | 18 |             } | 
| 55 | 19 |         } | 
| 56 |  | -        long dif = 0; | 
| 57 |  | -        // Principle of inclusion-exclusion | 
| 58 |  | -        for (Map.Entry<Integer, List<Integer>> midEntry : dict.entrySet()) { | 
| 59 |  | -            List<Integer> b = midEntry.getValue(); | 
| 60 |  | -            int m = b.size(); | 
| 61 |  | -            for (Map.Entry<Integer, List<Integer>> tmpEntry : dict.entrySet()) { | 
| 62 |  | -                if (!midEntry.getKey().equals(tmpEntry.getKey())) { | 
| 63 |  | -                    List<Integer> c = tmpEntry.getValue(); | 
| 64 |  | -                    int size = c.size(); | 
| 65 |  | -                    int k = 0; | 
| 66 |  | -                    int j = 0; | 
| 67 |  | -                    while (k < m) { | 
| 68 |  | -                        int i = b.get(k); | 
| 69 |  | -                        int r = m - 1 - k; | 
| 70 |  | -                        int u = i - k; | 
| 71 |  | -                        int v = (n - 1 - i) - r; | 
| 72 |  | -                        while (j < size && c.get(j) < i) { | 
| 73 |  | -                            j++; | 
| 74 |  | -                        } | 
| 75 |  | -                        int x = j; | 
| 76 |  | -                        int y = size - x; | 
| 77 |  | -                        dif = | 
| 78 |  | -                                (dif | 
| 79 |  | -                                                + convert(k, 1) | 
| 80 |  | -                                                        * convert(x, 1) | 
| 81 |  | -                                                        % MOD | 
| 82 |  | -                                                        * convert(y, 1) | 
| 83 |  | -                                                        % MOD | 
| 84 |  | -                                                        * convert(v - y, 1) | 
| 85 |  | -                                                        % MOD) | 
| 86 |  | -                                        % MOD; | 
| 87 |  | -                        dif = | 
| 88 |  | -                                (dif | 
| 89 |  | -                                                + convert(k, 1) | 
| 90 |  | -                                                        * convert(y, 2) | 
| 91 |  | -                                                        % MOD | 
| 92 |  | -                                                        * convert(u - x, 1) | 
| 93 |  | -                                                        % MOD) | 
| 94 |  | -                                        % MOD; | 
| 95 |  | -                        dif = | 
| 96 |  | -                                (dif + convert(k, 1) * convert(x, 1) % MOD * convert(y, 2) % MOD) | 
| 97 |  | -                                        % MOD; | 
| 98 |  | - | 
| 99 |  | -                        dif = | 
| 100 |  | -                                (dif | 
| 101 |  | -                                                + convert(r, 1) | 
| 102 |  | -                                                        * convert(x, 1) | 
| 103 |  | -                                                        % MOD | 
| 104 |  | -                                                        * convert(y, 1) | 
| 105 |  | -                                                        % MOD | 
| 106 |  | -                                                        * convert(u - x, 1) | 
| 107 |  | -                                                        % MOD) | 
| 108 |  | -                                        % MOD; | 
| 109 |  | -                        dif = | 
| 110 |  | -                                (dif | 
| 111 |  | -                                                + convert(r, 1) | 
| 112 |  | -                                                        * convert(x, 2) | 
| 113 |  | -                                                        % MOD | 
| 114 |  | -                                                        * convert(v - y, 1) | 
| 115 |  | -                                                        % MOD) | 
| 116 |  | -                                        % MOD; | 
| 117 |  | -                        dif = | 
| 118 |  | -                                (dif + convert(r, 1) * convert(x, 2) % MOD * convert(y, 1) % MOD) | 
| 119 |  | -                                        % MOD; | 
| 120 |  | -                        k++; | 
| 121 |  | -                    } | 
| 122 |  | -                } | 
|  | 20 | +        int n = nums.length; | 
|  | 21 | +        int[] newNums = new int[n]; | 
|  | 22 | +        Map<Integer, Integer> map = new HashMap<>(n); | 
|  | 23 | +        int m = 0; | 
|  | 24 | +        int index = 0; | 
|  | 25 | +        for (int x : nums) { | 
|  | 26 | +            Integer id = map.get(x); | 
|  | 27 | +            if (id == null) { | 
|  | 28 | +                id = m++; | 
|  | 29 | +                map.put(x, id); | 
| 123 | 30 |             } | 
|  | 31 | +            newNums[index++] = id; | 
| 124 | 32 |         } | 
| 125 |  | -        return (int) ((ans - dif + MOD) % MOD); | 
| 126 |  | -    } | 
| 127 |  | - | 
| 128 |  | -    private long convert(int n, int k) { | 
| 129 |  | -        if (k > n) { | 
|  | 33 | +        if (m == n) { | 
| 130 | 34 |             return 0; | 
| 131 | 35 |         } | 
| 132 |  | -        if (k == 0 || k == n) { | 
| 133 |  | -            return 1; | 
|  | 36 | +        int[] rightCount = new int[m]; | 
|  | 37 | +        for (int x : newNums) { | 
|  | 38 | +            rightCount[x]++; | 
| 134 | 39 |         } | 
| 135 |  | -        long res = 1; | 
| 136 |  | -        for (int i = 0; i < k; i++) { | 
| 137 |  | -            res = res * (n - i) / (i + 1); | 
|  | 40 | +        int[] leftCount = new int[m]; | 
|  | 41 | +        long ans = (long) n * (n - 1) * (n - 2) * (n - 3) * (n - 4) / 120; | 
|  | 42 | +        for (int left = 0; left < n - 2; left++) { | 
|  | 43 | +            int x = newNums[left]; | 
|  | 44 | +            rightCount[x]--; | 
|  | 45 | +            if (left >= 2) { | 
|  | 46 | +                int right = n - (left + 1); | 
|  | 47 | +                int leftX = leftCount[x]; | 
|  | 48 | +                int rightX = rightCount[x]; | 
|  | 49 | +                ans -= c2[left - leftX] * c2[right - rightX]; | 
|  | 50 | +                for (int y = 0; y < m; ++y) { | 
|  | 51 | +                    if (y == x) { | 
|  | 52 | +                        continue; | 
|  | 53 | +                    } | 
|  | 54 | +                    int rightY = rightCount[y]; | 
|  | 55 | +                    int leftY = leftCount[y]; | 
|  | 56 | +                    ans -= c2[leftY] * rightX * (right - rightX); | 
|  | 57 | +                    ans -= c2[rightY] * leftX * (left - leftX); | 
|  | 58 | +                    ans -= | 
|  | 59 | +                            leftY | 
|  | 60 | +                                    * rightY | 
|  | 61 | +                                    * (leftX * (right - rightX - rightY) | 
|  | 62 | +                                            + rightX * (left - leftX - leftY)); | 
|  | 63 | +                } | 
|  | 64 | +            } | 
|  | 65 | +            leftCount[x]++; | 
| 138 | 66 |         } | 
| 139 |  | -        return res % MOD; | 
|  | 67 | +        return (int) (ans % MOD); | 
| 140 | 68 |     } | 
| 141 | 69 | } | 
0 commit comments