Skip to content

Commit 0ecf406

Browse files
committed
Update ReadMe
1 parent 7cd5502 commit 0ecf406

File tree

1 file changed

+39
-38
lines changed

1 file changed

+39
-38
lines changed

README.md

Lines changed: 39 additions & 38 deletions
Original file line numberDiff line numberDiff line change
@@ -88,7 +88,7 @@ See all available versions [here](https://www.jsdelivr.com/package/npm/danfojs)
8888
8989
df.plot("div2").table() //display csv as table
9090
91-
new_df = df.set_index({ key: "Date" }) //resets the index to Date column
91+
new_df = df.set_index({ column: "Date" }) //resets the index to Date column
9292
new_df.plot("div3").line({ columns: ["AAPL.Open", "AAPL.High"] }) //makes a timeseries plot
9393
9494
}).catch(err => {
@@ -119,59 +119,60 @@ npm install danfojs-node
119119

120120
const dfd = require("danfojs-node")
121121

122+
const file_url = "https://web.stanford.edu/class/archive/cs/cs109/cs109.1166/stuff/titanic.csv"
123+
dfd.read_csv(file_url)
124+
.then(df => {
125+
//prints the first five columns
126+
df.head().print()
122127

123-
dfd.read_csv("https://web.stanford.edu/class/archive/cs/cs109/cs109.1166/stuff/titanic.csv")
124-
.then(df => {
125-
//prints the first five columns
126-
df.head().print()
128+
// Calculate descriptive statistics for all numerical columns
129+
df.describe().print()
127130

128-
//Calculate descriptive statistics for all numerical columns
129-
df.describe().print()
131+
//prints the shape of the data
132+
console.log(df.shape);
130133

131-
//prints the shape of the data
132-
console.log(df.shape);
134+
//prints all column names
135+
console.log(df.columns);
133136

134-
//prints all column names
135-
console.log(df.column_names);
137+
// //prints the inferred dtypes of each column
138+
df.ctypes.print()
136139

137-
//prints the inferred dtypes of each column
138-
df.ctypes.print()
140+
//selecting a column by subsetting
141+
df['Name'].print()
139142

140-
//selecting a column by subsetting
141-
df['Name'].print()
143+
//drop columns by names
144+
cols_2_remove = ['Age', 'Pclass']
145+
df_drop = df.drop({ columns: cols_2_remove, axis: 1 })
146+
df_drop.print()
142147

143-
//drop columns by names
144-
cols_2_remove = ['Age', 'Pclass']
145-
df_drop = df.drop({ columns: cols_2_remove, axis: 1 })
146-
df_drop.print()
147148

149+
//select columns by dtypes
150+
let str_cols = df_drop.select_dtypes(["string"])
151+
let num_cols = df_drop.select_dtypes(["int32", "float32"])
152+
str_cols.print()
153+
num_cols.print()
148154

149-
//select columns by dtypes
150-
let str_cols = df_drop.select_dtypes(["string"])
151-
let num_cols = df_drop.select_dtypes(["int32", "float32"])
152-
str_cols.print()
153-
num_cols.print()
154155

156+
//add new column to Dataframe
155157

156-
//add new column to Dataframe
157-
let new_vals = df['Fare'].round().values
158-
df_drop.addColumn({ column: "fare_round", value: new_vals})
159-
df_drop.print()
158+
let new_vals = df['Fare'].round(1)
159+
df_drop.addColumn({ column: "fare_round", values: new_vals, inplace: true })
160+
df_drop.print()
160161

161-
df_drop['fare_round'].print(5)
162+
df_drop['fare_round'].round(2).print(5)
162163

163-
//prints the number of occurence each value in the column
164-
df_drop['Survived'].value_counts().print()
164+
//prints the number of occurence each value in the column
165+
df_drop['Survived'].value_counts().print()
165166

166-
//print the last ten elementa of a DataFrame
167-
df_drop.tail(10).print()
167+
//print the last ten elementa of a DataFrame
168+
df_drop.tail(10).print()
168169

169-
//prints the number of missing values in a DataFrame
170-
df_drop.isna().sum().print()
170+
//prints the number of missing values in a DataFrame
171+
df_drop.isna().sum().print()
171172

172-
}).catch(err => {
173-
console.log(err);
174-
})
173+
}).catch(err => {
174+
console.log(err);
175+
})
175176

176177
```
177178
Output in Node Console:

0 commit comments

Comments
 (0)