Skip to content

Commit be844bd

Browse files
authored
Update README.md
1 parent 693cdc8 commit be844bd

File tree

1 file changed

+42
-49
lines changed

1 file changed

+42
-49
lines changed

README.md

Lines changed: 42 additions & 49 deletions
Original file line numberDiff line numberDiff line change
@@ -130,69 +130,62 @@ Output in Browser:
130130
### Example usage in Nodejs
131131

132132
```javascript
133+
const dfd = require("danfojs-node");
133134

134-
const dfd = require("danfojs-node")
135+
const file_url =
136+
"https://web.stanford.edu/class/archive/cs/cs109/cs109.1166/stuff/titanic.csv";
137+
dfd
138+
.readCSV(file_url)
139+
.then((df) => {
140+
//prints the first five columns
141+
df.head().print();
135142

136-
const file_url = "https://web.stanford.edu/class/archive/cs/cs109/cs109.1166/stuff/titanic.csv"
137-
dfd.readCSV(file_url)
138-
.then(df => {
139-
//prints the first five columns
140-
df.head().print()
143+
// Calculate descriptive statistics for all numerical columns
144+
df.describe().print();
141145

142-
// Calculate descriptive statistics for all numerical columns
143-
df.describe().print()
146+
//prints the shape of the data
147+
console.log(df.shape);
144148

145-
//prints the shape of the data
146-
console.log(df.shape);
149+
//prints all column names
150+
console.log(df.columns);
147151

148-
//prints all column names
149-
console.log(df.columns);
152+
// //prints the inferred dtypes of each column
153+
df.ctypes.print();
150154

151-
// //prints the inferred dtypes of each column
152-
df.ctypes.print()
155+
//selecting a column by subsetting
156+
df["Name"].print();
153157

154-
//selecting a column by subsetting
155-
df['Name'].print()
158+
//drop columns by names
159+
let cols_2_remove = ["Age", "Pclass"];
160+
let df_drop = df.drop({ columns: cols_2_remove, axis: 1 });
161+
df_drop.print();
156162

157-
//drop columns by names
158-
cols_2_remove = ['Age', 'Pclass']
159-
df_drop = df.drop({ columns: cols_2_remove, axis: 1 })
160-
df_drop.print()
163+
//select columns by dtypes
164+
let str_cols = df_drop.selectDtypes(["string"]);
165+
let num_cols = df_drop.selectDtypes(["int32", "float32"]);
166+
str_cols.print();
167+
num_cols.print();
161168

169+
//add new column to Dataframe
162170

163-
//select columns by dtypes
164-
let str_cols = df_drop.selectDtypes(["string"])
165-
let num_cols = df_drop.selectDtypes(["int32", "float32"])
166-
str_cols.print()
167-
num_cols.print()
171+
let new_vals = df["Fare"].round(1);
172+
df_drop.addColumn("fare_round", new_vals, { inplace: true });
173+
df_drop.print();
168174

169-
//select columns by dtypes
170-
let str_cols = df_drop.select_dtypes(["string"])
171-
let num_cols = df_drop.select_dtypes(["int32", "float32"])
172-
str_cols.print()
173-
num_cols.print()
175+
df_drop["fare_round"].round(2).print(5);
174176

175-
//add new column to Dataframe
177+
//prints the number of occurence each value in the column
178+
df_drop["Survived"].valueCounts().print();
176179

177-
let new_vals = df['Fare'].round(1)
178-
df_drop.addColumn("fare_round", new_vals, { inplace: true })
179-
df_drop.print()
180-
181-
df_drop['fare_round'].round(2).print(5)
182-
183-
//prints the number of occurence each value in the column
184-
df_drop['Survived'].valueCounts().print()
185-
186-
//print the last ten elementa of a DataFrame
187-
df_drop.tail(10).print()
188-
189-
//prints the number of missing values in a DataFrame
190-
df_drop.isNa().sum().print()
191-
192-
}).catch(err => {
193-
console.log(err);
194-
})
180+
//print the last ten elementa of a DataFrame
181+
df_drop.tail(10).print();
195182

183+
//prints the number of missing values in a DataFrame
184+
df_drop.isNa().sum().print();
185+
})
186+
.catch((err) => {
187+
console.log(err);
188+
});
196189

197190
```
198191
Output in Node Console:

0 commit comments

Comments
 (0)