|
1 | 1 | #include <stdio.h> |
2 | 2 | #include <stdlib.h> |
3 | | -#include <time.h> |
4 | 3 | #include "../include/Core/training.h" |
| 4 | +#include "../include/Core/dataset.h" |
5 | 5 |
|
6 | 6 | int main() |
7 | 7 | { |
8 | | - srand(time(NULL)); |
9 | 8 | NeuralNetwork *network = create_neural_network(2); |
10 | | - |
11 | | - build_network(network, OPTIMIZER_ADAM, 0.01f, LOSS_MSE, 0.0f, 0.0f); |
| 9 | + build_network(network, OPTIMIZER_ADAM, 0.1f, LOSS_MSE, 0.0f, 0.0f); |
12 | 10 | model_add(network, LAYER_DENSE, ACTIVATION_RELU, 2, 4, 0.0f, 0, 0); |
13 | 11 | model_add(network, LAYER_DENSE, ACTIVATION_TANH, 4, 4, 0.0f, 0, 0); |
14 | 12 | model_add(network, LAYER_DENSE, ACTIVATION_SIGMOID, 4, 1, 0.0f, 0, 0); |
15 | 13 |
|
16 | | - int num_samples = 4; |
17 | | - float **X_train = (float **)cm_safe_malloc(num_samples * sizeof(float *), __FILE__, __LINE__); |
18 | | - float **y_train = (float **)cm_safe_malloc(num_samples * sizeof(float *), __FILE__, __LINE__); |
19 | | - |
20 | | - for (int i = 0; i < num_samples; i++) |
21 | | - { |
22 | | - X_train[i] = (float *)cm_safe_malloc(2 * sizeof(float), __FILE__, __LINE__); |
23 | | - y_train[i] = (float *)cm_safe_malloc(1 * sizeof(float), __FILE__, __LINE__); |
24 | | - } |
| 14 | + float X_data[4][2] = { |
| 15 | + {0.0f, 0.0f}, |
| 16 | + {0.0f, 1.0f}, |
| 17 | + {1.0f, 0.0f}, |
| 18 | + {1.0f, 1.0f}}; |
25 | 19 |
|
26 | | - X_train[0][0] = 0.0f; |
27 | | - X_train[0][1] = 0.0f; |
28 | | - y_train[0][0] = 0.0f; |
29 | | - X_train[1][0] = 0.0f; |
30 | | - X_train[1][1] = 1.0f; |
31 | | - y_train[1][0] = 1.0f; |
| 20 | + float y_data[4][1] = { |
| 21 | + {0.0f}, |
| 22 | + {1.0f}, |
| 23 | + {1.0f}, |
| 24 | + {1.0f}}; |
32 | 25 |
|
33 | | - X_train[2][0] = 1.0f; |
34 | | - X_train[2][1] = 0.0f; |
35 | | - y_train[2][0] = 1.0f; |
36 | | - |
37 | | - X_train[3][0] = 1.0f; |
38 | | - X_train[3][1] = 1.0f; |
39 | | - y_train[3][0] = 1.0f; |
| 26 | + Dataset *dataset = dataset_create(); |
| 27 | + dataset_load_arrays(dataset, (float *)X_data, (float *)y_data, 4, 2, 1); |
40 | 28 |
|
41 | 29 | summary(network); |
42 | | - train_network(network, X_train, y_train, num_samples, 2, 1, 1, 300); |
43 | | - |
44 | | - MetricType metrics[] = {METRIC_R2_SCORE}; |
45 | 30 |
|
46 | | - int num_metrics = sizeof(metrics) / sizeof(metrics[0]); |
47 | | - float results[num_metrics]; |
48 | | - |
49 | | - test_network(network, X_train, y_train, num_samples, 2, 1, (int *)metrics, num_metrics, results); |
50 | | - printf("R2 Score: %.2f\n", results[0]); |
51 | | - |
52 | | - for (int i = 0; i < num_samples; i++) |
53 | | - { |
54 | | - float prediction = 0.0f; |
55 | | - forward_pass(network, X_train[i], &prediction, 2, 1, 0); |
56 | | - printf("Input: [%.0f, %.0f], Expected: %.0f, Predicted: %.4f\n", |
57 | | - X_train[i][0], X_train[i][1], y_train[i][0], prediction); |
58 | | - } |
| 31 | + train_network(network, dataset, 30); |
| 32 | + test_network(network, dataset->X, dataset->y, dataset->num_samples, NULL); |
59 | 33 |
|
| 34 | + dataset_free(dataset); |
60 | 35 | free_neural_network(network); |
61 | 36 |
|
62 | | - for (int i = 0; i < num_samples; i++) |
63 | | - { |
64 | | - cm_safe_free((void **)&X_train[i]); |
65 | | - cm_safe_free((void **)&y_train[i]); |
66 | | - } |
67 | | - cm_safe_free((void **)&X_train); |
68 | | - cm_safe_free((void **)&y_train); |
69 | | - |
70 | 37 | return 0; |
71 | 38 | } |
0 commit comments