|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": null, |
| 6 | + "metadata": { |
| 7 | + "id": "BK5As0cbUejz", |
| 8 | + "jupyter": { |
| 9 | + "is_executing": true |
| 10 | + } |
| 11 | + }, |
| 12 | + "outputs": [], |
| 13 | + "source": [ |
| 14 | + "import random\n", |
| 15 | + "\n", |
| 16 | + "from etuples import etuple\n", |
| 17 | + "from unification import unify, var\n", |
| 18 | + "\n", |
| 19 | + "import pytensor.tensor as pt\n", |
| 20 | + "from pytensor.graph import rewrite_graph\n", |
| 21 | + "from pytensor.graph.fg import FunctionGraph\n", |
| 22 | + "from pytensor.graph.rewriting.basic import MergeOptimizer, PatternNodeRewriter, out2in" |
| 23 | + ] |
| 24 | + }, |
| 25 | + { |
| 26 | + "cell_type": "code", |
| 27 | + "execution_count": 87, |
| 28 | + "metadata": { |
| 29 | + "ExecuteTime": { |
| 30 | + "end_time": "2025-08-14T11:32:09.438328768Z", |
| 31 | + "start_time": "2025-08-14T11:29:54.500174Z" |
| 32 | + }, |
| 33 | + "id": "alNycwOIUzTM" |
| 34 | + }, |
| 35 | + "outputs": [], |
| 36 | + "source": [ |
| 37 | + "def find_optimal_P(P, Q, mc):\n", |
| 38 | + " pi = (Q * (P - mc)).sum()\n", |
| 39 | + " dpi_dP = pt.grad(pi, P)\n", |
| 40 | + " # P_star, success = root(dpi_dP, P, method=\"hybr\", optimizer_kwargs=dict(tol=1e-8))\n", |
| 41 | + " # return P_star, success\n", |
| 42 | + " return dpi_dP" |
| 43 | + ] |
| 44 | + }, |
| 45 | + { |
| 46 | + "cell_type": "code", |
| 47 | + "execution_count": 97, |
| 48 | + "metadata": { |
| 49 | + "ExecuteTime": { |
| 50 | + "end_time": "2025-08-14T11:32:09.440094174Z", |
| 51 | + "start_time": "2025-08-14T11:31:54.469010Z" |
| 52 | + }, |
| 53 | + "id": "wVnYGz8GVKb4" |
| 54 | + }, |
| 55 | + "outputs": [], |
| 56 | + "source": [ |
| 57 | + "price_effect = pt.scalar(\"price_effect\")\n", |
| 58 | + "price = pt.vector(\"price\")\n", |
| 59 | + "trend = pt.vector(\"trend\")\n", |
| 60 | + "seasonality = pt.vector(\"seasonality\")\n", |
| 61 | + "mc = pt.scalar(\"marginal_cost\")\n", |
| 62 | + "\n", |
| 63 | + "price_term = price * price_effect\n", |
| 64 | + "expected_sales = trend + price_term + seasonality" |
| 65 | + ] |
| 66 | + }, |
| 67 | + { |
| 68 | + "cell_type": "code", |
| 69 | + "execution_count": 98, |
| 70 | + "metadata": { |
| 71 | + "ExecuteTime": { |
| 72 | + "end_time": "2025-08-14T11:32:09.440827348Z", |
| 73 | + "start_time": "2025-08-14T11:31:54.681476Z" |
| 74 | + }, |
| 75 | + "id": "BeitshYMVkQU" |
| 76 | + }, |
| 77 | + "outputs": [], |
| 78 | + "source": [ |
| 79 | + "expr = find_optimal_P(price, expected_sales, mc=mc)" |
| 80 | + ] |
| 81 | + }, |
| 82 | + { |
| 83 | + "cell_type": "code", |
| 84 | + "execution_count": 99, |
| 85 | + "metadata": { |
| 86 | + "ExecuteTime": { |
| 87 | + "end_time": "2025-08-14T11:32:09.443902007Z", |
| 88 | + "start_time": "2025-08-14T11:31:54.918556Z" |
| 89 | + }, |
| 90 | + "id": "jugOxL4DcRFN" |
| 91 | + }, |
| 92 | + "outputs": [ |
| 93 | + { |
| 94 | + "name": "stdout", |
| 95 | + "output_type": "stream", |
| 96 | + "text": [ |
| 97 | + "Add [id A] 5\n", |
| 98 | + " ├─ Mul [id B] 4\n", |
| 99 | + " │ ├─ Sub [id C] 3\n", |
| 100 | + " │ │ ├─ price [id D]\n", |
| 101 | + " │ │ └─ ExpandDims{axis=0} [id E] 2\n", |
| 102 | + " │ │ └─ marginal_cost [id F]\n", |
| 103 | + " │ └─ ExpandDims{axis=0} [id G] 0\n", |
| 104 | + " │ └─ price_effect [id H]\n", |
| 105 | + " ├─ trend [id I]\n", |
| 106 | + " ├─ Mul [id J] 1\n", |
| 107 | + " │ ├─ price [id D]\n", |
| 108 | + " │ └─ ExpandDims{axis=0} [id G] 0\n", |
| 109 | + " │ └─ ···\n", |
| 110 | + " └─ seasonality [id K]\n" |
| 111 | + ] |
| 112 | + }, |
| 113 | + { |
| 114 | + "data": { |
| 115 | + "text/plain": [ |
| 116 | + "<ipykernel.iostream.OutStream at 0x7fcbccd613c0>" |
| 117 | + ] |
| 118 | + }, |
| 119 | + "execution_count": 99, |
| 120 | + "metadata": {}, |
| 121 | + "output_type": "execute_result" |
| 122 | + } |
| 123 | + ], |
| 124 | + "source": [ |
| 125 | + "# Use existing rewrites to simplify expression\n", |
| 126 | + "fgraph = FunctionGraph(outputs=[expr], clone=False)\n", |
| 127 | + "rewrite_graph(fgraph, include=(\"canonicalize\",))\n", |
| 128 | + "fgraph.dprint()" |
| 129 | + ] |
| 130 | + }, |
| 131 | + { |
| 132 | + "cell_type": "code", |
| 133 | + "execution_count": 100, |
| 134 | + "metadata": { |
| 135 | + "ExecuteTime": { |
| 136 | + "end_time": "2025-08-14T11:32:09.445406846Z", |
| 137 | + "start_time": "2025-08-14T11:31:55.243098Z" |
| 138 | + }, |
| 139 | + "id": "86-KeCOFWQZU" |
| 140 | + }, |
| 141 | + "outputs": [], |
| 142 | + "source": [ |
| 143 | + "# distribute_mul_over_add = PatternNodeRewriter(\n", |
| 144 | + "# (pt.mul, (pt.add, \"x\", \"y\"), \"z\"),\n", |
| 145 | + "# (pt.add, (pt.mul, \"x\", \"z\"), (pt.mul, \"y\", \"z\")),\n", |
| 146 | + "# )\n", |
| 147 | + "\n", |
| 148 | + "distribute_mul_over_sub = PatternNodeRewriter(\n", |
| 149 | + " (pt.mul, (pt.sub, \"x\", \"y\"), \"z\"),\n", |
| 150 | + " (pt.add, (pt.mul, \"x\", \"z\"), (pt.mul, (pt.neg, \"y\"), \"z\")),\n", |
| 151 | + ")\n", |
| 152 | + "\n", |
| 153 | + "combine_addition_terms = PatternNodeRewriter(\n", |
| 154 | + " (pt.add, (pt.add, \"x\", \"y\"), \"z\", \"x\", \"w\"),\n", |
| 155 | + " (pt.add, (pt.mul, \"x\", 2), (pt.add, \"y\", \"z\", \"w\")),\n", |
| 156 | + ")\n", |
| 157 | + "\n", |
| 158 | + "# distribute_mul_over_add = out2in(distribute_mul_over_add, name=\"distribute_mul_add\")\n", |
| 159 | + "distribute_mul_over_sub = out2in(distribute_mul_over_sub, name=\"distribute_mul_sub\")\n", |
| 160 | + "combine_addition_terms = out2in(combine_addition_terms, name=\"combine_addition_terms\")\n", |
| 161 | + "\n", |
| 162 | + "# distribute\n", |
| 163 | + "distribute_mul_over_sub.rewrite(fgraph)\n", |
| 164 | + "# merge equivalent terms\n", |
| 165 | + "MergeOptimizer().rewrite(fgraph)\n", |
| 166 | + "# combine equivalent terms\n", |
| 167 | + "combine_addition_terms.rewrite(fgraph)\n", |
| 168 | + "# extract rewritten expression\n", |
| 169 | + "expr = fgraph.outputs[0]" |
| 170 | + ] |
| 171 | + }, |
| 172 | + { |
| 173 | + "cell_type": "code", |
| 174 | + "execution_count": 101, |
| 175 | + "metadata": { |
| 176 | + "ExecuteTime": { |
| 177 | + "end_time": "2025-08-14T11:32:09.446341276Z", |
| 178 | + "start_time": "2025-08-14T11:31:56.276558Z" |
| 179 | + }, |
| 180 | + "id": "4qGBap72Xvvn" |
| 181 | + }, |
| 182 | + "outputs": [ |
| 183 | + { |
| 184 | + "name": "stdout", |
| 185 | + "output_type": "stream", |
| 186 | + "text": [ |
| 187 | + "Add [id A]\n", |
| 188 | + " ├─ Mul [id B]\n", |
| 189 | + " │ ├─ Mul [id C]\n", |
| 190 | + " │ │ ├─ price [id D]\n", |
| 191 | + " │ │ └─ ExpandDims{axis=0} [id E]\n", |
| 192 | + " │ │ └─ price_effect [id F]\n", |
| 193 | + " │ └─ ExpandDims{axis=0} [id G]\n", |
| 194 | + " │ └─ 2 [id H]\n", |
| 195 | + " └─ Add [id I]\n", |
| 196 | + " ├─ Mul [id J]\n", |
| 197 | + " │ ├─ Neg [id K]\n", |
| 198 | + " │ │ └─ ExpandDims{axis=0} [id L]\n", |
| 199 | + " │ │ └─ marginal_cost [id M]\n", |
| 200 | + " │ └─ ExpandDims{axis=0} [id E]\n", |
| 201 | + " │ └─ ···\n", |
| 202 | + " ├─ trend [id N]\n", |
| 203 | + " └─ seasonality [id O]\n" |
| 204 | + ] |
| 205 | + }, |
| 206 | + { |
| 207 | + "data": { |
| 208 | + "text/plain": [ |
| 209 | + "<ipykernel.iostream.OutStream at 0x7fcbccd613c0>" |
| 210 | + ] |
| 211 | + }, |
| 212 | + "execution_count": 101, |
| 213 | + "metadata": {}, |
| 214 | + "output_type": "execute_result" |
| 215 | + } |
| 216 | + ], |
| 217 | + "source": [ |
| 218 | + "expr.dprint()" |
| 219 | + ] |
| 220 | + }, |
| 221 | + { |
| 222 | + "cell_type": "code", |
| 223 | + "execution_count": 102, |
| 224 | + "metadata": { |
| 225 | + "ExecuteTime": { |
| 226 | + "end_time": "2025-08-14T11:32:09.447033733Z", |
| 227 | + "start_time": "2025-08-14T11:31:59.481064Z" |
| 228 | + }, |
| 229 | + "id": "8Fq10k2LcCY-" |
| 230 | + }, |
| 231 | + "outputs": [], |
| 232 | + "source": [ |
| 233 | + "# Create variations of a graph for pattern matching\n", |
| 234 | + "rewrites = [\n", |
| 235 | + " out2in(\n", |
| 236 | + " PatternNodeRewriter((pt.add, \"x\", \"y\"), (pt.add, \"y\", \"x\")),\n", |
| 237 | + " name=\"commutative_add\",\n", |
| 238 | + " ignore_newtrees=True,\n", |
| 239 | + " ),\n", |
| 240 | + " out2in(\n", |
| 241 | + " PatternNodeRewriter((pt.mul, \"x\", \"y\"), (pt.mul, \"y\", \"x\")),\n", |
| 242 | + " name=\"commutative_mul\",\n", |
| 243 | + " ignore_newtrees=True,\n", |
| 244 | + " ),\n", |
| 245 | + " out2in(\n", |
| 246 | + " PatternNodeRewriter(\n", |
| 247 | + " (pt.mul, (pt.mul, \"x\", \"y\"), \"z\"), (pt.mul, \"x\", (pt.mul, \"y\", \"z\"))\n", |
| 248 | + " ),\n", |
| 249 | + " name=\"associative_mul\",\n", |
| 250 | + " ignore_newtrees=True,\n", |
| 251 | + " ),\n", |
| 252 | + "]\n", |
| 253 | + "\n", |
| 254 | + "\n", |
| 255 | + "def yield_arithmetic_variants(expr, n):\n", |
| 256 | + " fgraph = FunctionGraph(outputs=[expr], clone=False)\n", |
| 257 | + " while n > 0:\n", |
| 258 | + " rewrite = random.choice(rewrites)\n", |
| 259 | + " res = rewrite.apply(fgraph)\n", |
| 260 | + " n -= 1\n", |
| 261 | + " if res:\n", |
| 262 | + " yield fgraph.outputs[0]\n", |
| 263 | + " yield fgraph.outputs[0]" |
| 264 | + ] |
| 265 | + }, |
| 266 | + { |
| 267 | + "cell_type": "code", |
| 268 | + "execution_count": 103, |
| 269 | + "metadata": { |
| 270 | + "ExecuteTime": { |
| 271 | + "end_time": "2025-08-14T11:32:09.447578804Z", |
| 272 | + "start_time": "2025-08-14T11:31:59.831774Z" |
| 273 | + }, |
| 274 | + "colab": { |
| 275 | + "base_uri": "https://localhost:8080/", |
| 276 | + "height": 198 |
| 277 | + }, |
| 278 | + "id": "h9K70LGxYJ7E", |
| 279 | + "outputId": "793e98c6-4570-43bf-a452-eb6d0d745dc7" |
| 280 | + }, |
| 281 | + "outputs": [ |
| 282 | + { |
| 283 | + "data": { |
| 284 | + "text/plain": [ |
| 285 | + "{~price: price, ~a: Mul.0, ~b: Add.0}" |
| 286 | + ] |
| 287 | + }, |
| 288 | + "execution_count": 103, |
| 289 | + "metadata": {}, |
| 290 | + "output_type": "execute_result" |
| 291 | + } |
| 292 | + ], |
| 293 | + "source": [ |
| 294 | + "# Rewrite graph randomly until we match price * a + b\n", |
| 295 | + "a, b, price_ = var(\"a\"), var(\"b\"), var(\"price\")\n", |
| 296 | + "pattern = etuple(pt.add, etuple(pt.mul, price_, a), b)\n", |
| 297 | + "\n", |
| 298 | + "for variant in yield_arithmetic_variants(expr, n=100):\n", |
| 299 | + " match_dict = unify(variant, pattern)\n", |
| 300 | + " if match_dict and match_dict[price_] is price:\n", |
| 301 | + " break\n", |
| 302 | + "else:\n", |
| 303 | + " raise ValueError(\"No matching variant found\")\n", |
| 304 | + "match_dict" |
| 305 | + ] |
| 306 | + }, |
| 307 | + { |
| 308 | + "cell_type": "code", |
| 309 | + "execution_count": 104, |
| 310 | + "metadata": { |
| 311 | + "ExecuteTime": { |
| 312 | + "end_time": "2025-08-14T11:32:09.448905279Z", |
| 313 | + "start_time": "2025-08-14T11:32:01.264784Z" |
| 314 | + }, |
| 315 | + "colab": { |
| 316 | + "base_uri": "https://localhost:8080/" |
| 317 | + }, |
| 318 | + "id": "8M-qjXBKa6Db", |
| 319 | + "outputId": "cdce40c4-e1dd-4757-f4d6-f368643bb5c1" |
| 320 | + }, |
| 321 | + "outputs": [ |
| 322 | + { |
| 323 | + "name": "stdout", |
| 324 | + "output_type": "stream", |
| 325 | + "text": [ |
| 326 | + "True_div [id A]\n", |
| 327 | + " ├─ Neg [id B]\n", |
| 328 | + " │ └─ Add [id C]\n", |
| 329 | + " │ ├─ Mul [id D]\n", |
| 330 | + " │ │ ├─ Neg [id E]\n", |
| 331 | + " │ │ │ └─ ExpandDims{axis=0} [id F]\n", |
| 332 | + " │ │ │ └─ marginal_cost [id G]\n", |
| 333 | + " │ │ └─ ExpandDims{axis=0} [id H]\n", |
| 334 | + " │ │ └─ price_effect [id I]\n", |
| 335 | + " │ ├─ trend [id J]\n", |
| 336 | + " │ └─ seasonality [id K]\n", |
| 337 | + " └─ Mul [id L]\n", |
| 338 | + " ├─ ExpandDims{axis=0} [id H]\n", |
| 339 | + " │ └─ ···\n", |
| 340 | + " └─ ExpandDims{axis=0} [id M]\n", |
| 341 | + " └─ 2 [id N]\n" |
| 342 | + ] |
| 343 | + }, |
| 344 | + { |
| 345 | + "data": { |
| 346 | + "text/plain": [ |
| 347 | + "<ipykernel.iostream.OutStream at 0x7fcbccd613c0>" |
| 348 | + ] |
| 349 | + }, |
| 350 | + "execution_count": 104, |
| 351 | + "metadata": {}, |
| 352 | + "output_type": "execute_result" |
| 353 | + } |
| 354 | + ], |
| 355 | + "source": [ |
| 356 | + "optimal_result = -match_dict[b] / match_dict[a]\n", |
| 357 | + "optimal_result.dprint()" |
| 358 | + ] |
| 359 | + }, |
| 360 | + { |
| 361 | + "cell_type": "code", |
| 362 | + "execution_count": null, |
| 363 | + "metadata": { |
| 364 | + "ExecuteTime": { |
| 365 | + "end_time": "2025-08-14T11:32:09.449645675Z", |
| 366 | + "start_time": "2025-08-14T11:25:52.269957Z" |
| 367 | + } |
| 368 | + }, |
| 369 | + "outputs": [], |
| 370 | + "source": [] |
| 371 | + } |
| 372 | + ], |
| 373 | + "metadata": { |
| 374 | + "colab": { |
| 375 | + "provenance": [] |
| 376 | + }, |
| 377 | + "kernelspec": { |
| 378 | + "display_name": "Python 3 (ipykernel)", |
| 379 | + "language": "python", |
| 380 | + "name": "python3" |
| 381 | + }, |
| 382 | + "language_info": { |
| 383 | + "name": "python" |
| 384 | + } |
| 385 | + }, |
| 386 | + "nbformat": 4, |
| 387 | + "nbformat_minor": 0 |
| 388 | +} |
0 commit comments