|
8 | 8 | from abc import abstractmethod |
9 | 9 | from dataclasses import dataclass |
10 | 10 | from functools import reduce |
11 | | -from typing import TYPE_CHECKING, Any, Literal |
| 11 | +from typing import TYPE_CHECKING, Any, Literal, TypedDict |
12 | 12 |
|
13 | 13 | import numpy as np |
14 | 14 |
|
|
28 | 28 |
|
29 | 29 | from zarr.core.array import ShardsLike |
30 | 30 |
|
| 31 | +from collections.abc import Sequence |
| 32 | + |
| 33 | +# Type alias for chunk edge length specification |
| 34 | +# Can be either an integer or a run-length encoded tuple [value, count] |
| 35 | +ChunkEdgeLength = int | tuple[int, int] |
| 36 | + |
| 37 | + |
| 38 | +class RectilinearChunkGridConfigurationDict(TypedDict): |
| 39 | + """TypedDict for rectilinear chunk grid configuration""" |
| 40 | + |
| 41 | + kind: Literal["inline"] |
| 42 | + chunk_shapes: Sequence[Sequence[ChunkEdgeLength]] |
| 43 | + |
| 44 | + |
| 45 | +def _expand_run_length_encoding(spec: Sequence[ChunkEdgeLength]) -> tuple[int, ...]: |
| 46 | + """ |
| 47 | + Expand a chunk edge length specification into a tuple of integers. |
| 48 | +
|
| 49 | + The specification can contain: |
| 50 | + - integers: representing explicit edge lengths |
| 51 | + - tuples [value, count]: representing run-length encoded sequences |
| 52 | +
|
| 53 | + Parameters |
| 54 | + ---------- |
| 55 | + spec : Sequence[ChunkEdgeLength] |
| 56 | + The chunk edge length specification for one axis |
| 57 | +
|
| 58 | + Returns |
| 59 | + ------- |
| 60 | + tuple[int, ...] |
| 61 | + Expanded sequence of chunk edge lengths |
| 62 | +
|
| 63 | + Examples |
| 64 | + -------- |
| 65 | + >>> _expand_run_length_encoding([2, 3]) |
| 66 | + (2, 3) |
| 67 | + >>> _expand_run_length_encoding([[2, 3]]) |
| 68 | + (2, 2, 2) |
| 69 | + >>> _expand_run_length_encoding([1, [2, 1], 3]) |
| 70 | + (1, 2, 3) |
| 71 | + >>> _expand_run_length_encoding([[1, 3], 3]) |
| 72 | + (1, 1, 1, 3) |
| 73 | + """ |
| 74 | + result: list[int] = [] |
| 75 | + for item in spec: |
| 76 | + if isinstance(item, int): |
| 77 | + # Explicit edge length |
| 78 | + result.append(item) |
| 79 | + elif isinstance(item, (list, tuple)): |
| 80 | + # Run-length encoded: [value, count] |
| 81 | + if len(item) != 2: |
| 82 | + raise TypeError( |
| 83 | + f"Run-length encoded items must be [int, int], got list of length {len(item)}" |
| 84 | + ) |
| 85 | + value, count = item |
| 86 | + # Runtime validation of JSON data |
| 87 | + if not isinstance(value, int) or not isinstance(count, int): # type: ignore[redundant-expr] |
| 88 | + raise TypeError( |
| 89 | + f"Run-length encoded items must be [int, int], got [{type(value).__name__}, {type(count).__name__}]" |
| 90 | + ) |
| 91 | + if count < 0: |
| 92 | + raise ValueError(f"Run-length count must be non-negative, got {count}") |
| 93 | + result.extend([value] * count) |
| 94 | + else: |
| 95 | + raise TypeError( |
| 96 | + f"Chunk edge length must be int or [int, int] for run-length encoding, got {type(item)}" |
| 97 | + ) |
| 98 | + return tuple(result) |
| 99 | + |
| 100 | + |
| 101 | +def _parse_chunk_shapes( |
| 102 | + data: Sequence[Sequence[ChunkEdgeLength]], |
| 103 | +) -> tuple[tuple[int, ...], ...]: |
| 104 | + """ |
| 105 | + Parse and expand chunk_shapes from metadata. |
| 106 | +
|
| 107 | + Parameters |
| 108 | + ---------- |
| 109 | + data : Sequence[Sequence[ChunkEdgeLength]] |
| 110 | + The chunk_shapes specification from metadata |
| 111 | +
|
| 112 | + Returns |
| 113 | + ------- |
| 114 | + tuple[tuple[int, ...], ...] |
| 115 | + Tuple of expanded chunk edge lengths for each axis |
| 116 | + """ |
| 117 | + # Runtime validation - strings are sequences but we don't want them |
| 118 | + # Type annotation is for static typing, this validates actual JSON data |
| 119 | + if isinstance(data, str) or not isinstance(data, Sequence): # type: ignore[redundant-expr,unreachable] |
| 120 | + raise TypeError(f"chunk_shapes must be a sequence, got {type(data)}") |
| 121 | + |
| 122 | + result = [] |
| 123 | + for i, axis_spec in enumerate(data): |
| 124 | + # Runtime validation for each axis spec |
| 125 | + if isinstance(axis_spec, str) or not isinstance(axis_spec, Sequence): # type: ignore[redundant-expr,unreachable] |
| 126 | + raise TypeError(f"chunk_shapes[{i}] must be a sequence, got {type(axis_spec)}") |
| 127 | + expanded = _expand_run_length_encoding(axis_spec) |
| 128 | + result.append(expanded) |
| 129 | + |
| 130 | + return tuple(result) |
| 131 | + |
31 | 132 |
|
32 | 133 | def _guess_chunks( |
33 | 134 | shape: tuple[int, ...] | int, |
@@ -159,6 +260,8 @@ def from_dict(cls, data: dict[str, JSON] | ChunkGrid) -> ChunkGrid: |
159 | 260 | name_parsed, _ = parse_named_configuration(data) |
160 | 261 | if name_parsed == "regular": |
161 | 262 | return RegularChunkGrid._from_dict(data) |
| 263 | + elif name_parsed == "rectilinear": |
| 264 | + return RectilinearChunkGrid._from_dict(data) |
162 | 265 | raise ValueError(f"Unknown chunk grid. Got {name_parsed}.") |
163 | 266 |
|
164 | 267 | @abstractmethod |
@@ -201,6 +304,183 @@ def get_nchunks(self, array_shape: tuple[int, ...]) -> int: |
201 | 304 | ) |
202 | 305 |
|
203 | 306 |
|
| 307 | +@dataclass(frozen=True) |
| 308 | +class RectilinearChunkGrid(ChunkGrid): |
| 309 | + """ |
| 310 | + A rectilinear chunk grid where chunk sizes vary along each axis. |
| 311 | +
|
| 312 | + Attributes |
| 313 | + ---------- |
| 314 | + chunk_shapes : tuple[tuple[int, ...], ...] |
| 315 | + For each axis, a tuple of chunk edge lengths along that axis. |
| 316 | + The sum of edge lengths must equal the array shape along that axis. |
| 317 | + """ |
| 318 | + |
| 319 | + chunk_shapes: tuple[tuple[int, ...], ...] |
| 320 | + |
| 321 | + def __init__(self, *, chunk_shapes: Sequence[Sequence[int]]) -> None: |
| 322 | + """ |
| 323 | + Initialize a RectilinearChunkGrid. |
| 324 | +
|
| 325 | + Parameters |
| 326 | + ---------- |
| 327 | + chunk_shapes : Sequence[Sequence[int]] |
| 328 | + For each axis, a sequence of chunk edge lengths. |
| 329 | + """ |
| 330 | + # Convert to nested tuples and validate |
| 331 | + parsed_shapes: list[tuple[int, ...]] = [] |
| 332 | + for i, axis_chunks in enumerate(chunk_shapes): |
| 333 | + if not isinstance(axis_chunks, Sequence): |
| 334 | + raise TypeError(f"chunk_shapes[{i}] must be a sequence, got {type(axis_chunks)}") |
| 335 | + # Validate all are positive integers |
| 336 | + axis_tuple = tuple(axis_chunks) |
| 337 | + for j, size in enumerate(axis_tuple): |
| 338 | + if not isinstance(size, int): |
| 339 | + raise TypeError( |
| 340 | + f"chunk_shapes[{i}][{j}] must be an int, got {type(size).__name__}" |
| 341 | + ) |
| 342 | + if size <= 0: |
| 343 | + raise ValueError(f"chunk_shapes[{i}][{j}] must be positive, got {size}") |
| 344 | + parsed_shapes.append(axis_tuple) |
| 345 | + |
| 346 | + object.__setattr__(self, "chunk_shapes", tuple(parsed_shapes)) |
| 347 | + |
| 348 | + @classmethod |
| 349 | + def _from_dict(cls, data: dict[str, JSON]) -> Self: |
| 350 | + """ |
| 351 | + Parse a RectilinearChunkGrid from metadata dict. |
| 352 | +
|
| 353 | + Parameters |
| 354 | + ---------- |
| 355 | + data : dict[str, JSON] |
| 356 | + Metadata dictionary with 'name' and 'configuration' keys |
| 357 | +
|
| 358 | + Returns |
| 359 | + ------- |
| 360 | + Self |
| 361 | + A RectilinearChunkGrid instance |
| 362 | + """ |
| 363 | + _, configuration = parse_named_configuration(data, "rectilinear") |
| 364 | + |
| 365 | + if not isinstance(configuration, dict): |
| 366 | + raise TypeError(f"configuration must be a dict, got {type(configuration)}") |
| 367 | + |
| 368 | + # Validate kind field |
| 369 | + kind = configuration.get("kind") |
| 370 | + if kind != "inline": |
| 371 | + raise ValueError(f"Only 'inline' kind is supported, got {kind!r}") |
| 372 | + |
| 373 | + # Parse chunk_shapes with run-length encoding support |
| 374 | + chunk_shapes_raw = configuration.get("chunk_shapes") |
| 375 | + if chunk_shapes_raw is None: |
| 376 | + raise ValueError("configuration must contain 'chunk_shapes'") |
| 377 | + |
| 378 | + # Type ignore: JSON data validated at runtime by _parse_chunk_shapes |
| 379 | + chunk_shapes_expanded = _parse_chunk_shapes(chunk_shapes_raw) # type: ignore[arg-type] |
| 380 | + |
| 381 | + return cls(chunk_shapes=chunk_shapes_expanded) |
| 382 | + |
| 383 | + def to_dict(self) -> dict[str, JSON]: |
| 384 | + """ |
| 385 | + Convert to metadata dict format. |
| 386 | +
|
| 387 | + Returns |
| 388 | + ------- |
| 389 | + dict[str, JSON] |
| 390 | + Metadata dictionary with 'name' and 'configuration' keys |
| 391 | + """ |
| 392 | + # Convert to list for JSON serialization |
| 393 | + chunk_shapes_list = [list(axis_chunks) for axis_chunks in self.chunk_shapes] |
| 394 | + |
| 395 | + return { |
| 396 | + "name": "rectilinear", |
| 397 | + "configuration": { |
| 398 | + "kind": "inline", |
| 399 | + "chunk_shapes": chunk_shapes_list, |
| 400 | + }, |
| 401 | + } |
| 402 | + |
| 403 | + def all_chunk_coords(self, array_shape: tuple[int, ...]) -> Iterator[tuple[int, ...]]: |
| 404 | + """ |
| 405 | + Generate all chunk coordinates for the given array shape. |
| 406 | +
|
| 407 | + Parameters |
| 408 | + ---------- |
| 409 | + array_shape : tuple[int, ...] |
| 410 | + Shape of the array |
| 411 | +
|
| 412 | + Yields |
| 413 | + ------ |
| 414 | + tuple[int, ...] |
| 415 | + Chunk coordinates |
| 416 | +
|
| 417 | + Raises |
| 418 | + ------ |
| 419 | + ValueError |
| 420 | + If array_shape doesn't match chunk_shapes |
| 421 | + """ |
| 422 | + if len(array_shape) != len(self.chunk_shapes): |
| 423 | + raise ValueError( |
| 424 | + f"array_shape has {len(array_shape)} dimensions but " |
| 425 | + f"chunk_shapes has {len(self.chunk_shapes)} dimensions" |
| 426 | + ) |
| 427 | + |
| 428 | + # Validate that chunk sizes sum to array shape |
| 429 | + for axis, (arr_size, axis_chunks) in enumerate( |
| 430 | + zip(array_shape, self.chunk_shapes, strict=False) |
| 431 | + ): |
| 432 | + chunk_sum = sum(axis_chunks) |
| 433 | + if chunk_sum != arr_size: |
| 434 | + raise ValueError( |
| 435 | + f"Sum of chunk sizes along axis {axis} is {chunk_sum} " |
| 436 | + f"but array shape is {arr_size}" |
| 437 | + ) |
| 438 | + |
| 439 | + # Generate coordinates |
| 440 | + # For each axis, we have len(axis_chunks) chunks |
| 441 | + nchunks_per_axis = [len(axis_chunks) for axis_chunks in self.chunk_shapes] |
| 442 | + return itertools.product(*(range(n) for n in nchunks_per_axis)) |
| 443 | + |
| 444 | + def get_nchunks(self, array_shape: tuple[int, ...]) -> int: |
| 445 | + """ |
| 446 | + Get the total number of chunks for the given array shape. |
| 447 | +
|
| 448 | + Parameters |
| 449 | + ---------- |
| 450 | + array_shape : tuple[int, ...] |
| 451 | + Shape of the array |
| 452 | +
|
| 453 | + Returns |
| 454 | + ------- |
| 455 | + int |
| 456 | + Total number of chunks |
| 457 | +
|
| 458 | + Raises |
| 459 | + ------ |
| 460 | + ValueError |
| 461 | + If array_shape doesn't match chunk_shapes |
| 462 | + """ |
| 463 | + if len(array_shape) != len(self.chunk_shapes): |
| 464 | + raise ValueError( |
| 465 | + f"array_shape has {len(array_shape)} dimensions but " |
| 466 | + f"chunk_shapes has {len(self.chunk_shapes)} dimensions" |
| 467 | + ) |
| 468 | + |
| 469 | + # Validate that chunk sizes sum to array shape |
| 470 | + for axis, (arr_size, axis_chunks) in enumerate( |
| 471 | + zip(array_shape, self.chunk_shapes, strict=False) |
| 472 | + ): |
| 473 | + chunk_sum = sum(axis_chunks) |
| 474 | + if chunk_sum != arr_size: |
| 475 | + raise ValueError( |
| 476 | + f"Sum of chunk sizes along axis {axis} is {chunk_sum} " |
| 477 | + f"but array shape is {arr_size}" |
| 478 | + ) |
| 479 | + |
| 480 | + # Total chunks is the product of number of chunks per axis |
| 481 | + return reduce(operator.mul, (len(axis_chunks) for axis_chunks in self.chunk_shapes), 1) |
| 482 | + |
| 483 | + |
204 | 484 | def _auto_partition( |
205 | 485 | *, |
206 | 486 | array_shape: tuple[int, ...], |
|
0 commit comments