|
| 1 | +--- |
| 2 | +sidebar_position: 1 |
| 3 | +title: 🚧模型获取 |
| 4 | +--- |
| 5 | + |
| 6 | +## 开源社区 |
| 7 | + |
| 8 | +大模型社区是指围绕大型深度学习模型(如 GPT 系列、BERT、T5 等)构建的开放协作平台和生态系统。这些社区由研究人员、开发者、数据科学家、工程师及爱好者组成,他们共同致力于大模型的研究、开发、优化和应用。 |
| 9 | + |
| 10 | +现在模型非常多,各有千秋,且更新迭代非常快。下面的表格列出了部分公司及其z主要大模型代号: |
| 11 | + |
| 12 | +| **公司名称** | **大模型代号** | |
| 13 | +| ----------------------------- | ------------------- | |
| 14 | +| **OpenAI** | GPT | |
| 15 | +| **Meta** | Llama | |
| 16 | +| **Anthropic(前 OpenAI 成员)** | Claude | |
| 17 | +| **X** | Grok | |
| 18 | +| **谷歌** | Gemini | |
| 19 | +| **微软** | Phi | |
| 20 | +| **百度** | 文心大模型 (Ernie) | |
| 21 | +| **阿里巴巴** | 通义千问 (Qwen), M6 | |
| 22 | +| **腾讯** | 混元 (Hunyuan) | |
| 23 | +| **字节跳动** | 豆包 | |
| 24 | +| **华为** | 盘古大模型 (Pangu) | |
| 25 | + |
| 26 | +社区具有明显的马太效应,即头部效应明显,头部模型拥有最多的资源,最新的技术,最多的用户。这里列举两个在国内外有一定影响力的社区。 |
| 27 | + |
| 28 | +### Hugging Face |
| 29 | + |
| 30 | +社区地址:[https://huggingface.co/](https://huggingface.co/) |
| 31 | + |
| 32 | +以 Qwen 模型为例,下面展示如何使用 Hugging Face 的 transformers 库进行推理。其中`model_name`为模型地址 |
| 33 | + |
| 34 | +```python showLineNumbers |
| 35 | +from transformers import AutoModelForCausalLM, AutoTokenizer |
| 36 | + |
| 37 | +model_size = "3B" # 3B 7B 14B 32B |
| 38 | +model_name = f"Qwen/Qwen2.5-{model_size}-Instruct" |
| 39 | + |
| 40 | +model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype="auto", device_map="auto") |
| 41 | +tokenizer = AutoTokenizer.from_pretrained(model_name) |
| 42 | + |
| 43 | +while True: |
| 44 | + prompt = input("输入你的问题: ") |
| 45 | + if prompt == "退出": |
| 46 | + break |
| 47 | + |
| 48 | + messages = [ |
| 49 | + { |
| 50 | + "role": "system", |
| 51 | + "content": "你是一个AI助手,由阿里巴巴云创建。你是一个乐于助人的助手。你总是以中文回答问题。", |
| 52 | + }, |
| 53 | + {"role": "user", "content": prompt}, |
| 54 | + ] |
| 55 | + text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
| 56 | + model_input = tokenizer([text], return_tensors="pt").to(model.device) |
| 57 | + |
| 58 | + generated_ids = model.generate(**model_input, max_new_tokens=512) |
| 59 | + generated_ids = [output[len(input_ids):] for input_ids, output in zip(model_input.input_ids, generated_ids)] |
| 60 | + |
| 61 | + response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] |
| 62 | + print(response) |
| 63 | +``` |
| 64 | + |
| 65 | +### 魔搭社区(阿里达摩院) |
| 66 | + |
| 67 | +社区地址:[https://www.modelscope.cn/](https://www.modelscope.cn/) |
| 68 | + |
| 69 | +除了 Hugging Face 的 transformers 库,魔搭社区还提供了 modelscope 库,基于中国网络环境,可以方便地进行推理。代码基本与 Hugging Face 一致。 |
| 70 | + |
| 71 | +```python showLineNumbers |
| 72 | +from modelscope import AutoModelForCausalLM, AutoTokenizer |
| 73 | + |
| 74 | +model_size = "0.5B" # 3B 7B 14B 32B |
| 75 | +model_name = f"Qwen/Qwen2.5-{model_size}-Instruct" |
| 76 | + |
| 77 | +model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype="auto", device_map="auto") |
| 78 | +tokenizer = AutoTokenizer.from_pretrained(model_name) |
| 79 | + |
| 80 | +while True: |
| 81 | + prompt = input("输入你的问题: ") |
| 82 | + if prompt == "退出": |
| 83 | + break |
| 84 | + |
| 85 | + messages = [ |
| 86 | + { |
| 87 | + "role": "system", |
| 88 | + "content": "你是一个AI助手,由阿里巴巴云创建。你是一个乐于助人的助手。你总是以中文回答问题。", |
| 89 | + }, |
| 90 | + {"role": "user", "content": prompt}, |
| 91 | + ] |
| 92 | + text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
| 93 | + model_input = tokenizer([text], return_tensors="pt").to(model.device) |
| 94 | + |
| 95 | + generated_ids = model.generate(**model_input, max_new_tokens=512) |
| 96 | + generated_ids = [output[len(input_ids):] for input_ids, output in zip(model_input.input_ids, generated_ids)] |
| 97 | + |
| 98 | + response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] |
| 99 | + print(response) |
| 100 | +``` |
| 101 | + |
| 102 | +## 商用接口 |
| 103 | + |
| 104 | +接口大同小异,这里列举一个国内的接口与一个国外的接口用作示例。 |
| 105 | + |
| 106 | +### OpenAI |
| 107 | + |
| 108 | +地址:[https://openai.com/](https://openai.com/) |
| 109 | + |
| 110 | +### 百度 |
| 111 | + |
| 112 | +地址:[https://cloud.baidu.com/](https://cloud.baidu.com/) |
0 commit comments